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Benchmarking graph neural networks for materials chemistry
Victor Fung 1✉, Jiaxin Zhang2, Eric Juarez 1 and Bobby G. Sumpter 1

Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of machine learning models remarkably
well-suited for materials applications. To date, a number of successful GNNs have been proposed and demonstrated for systems
ranging from crystal stability to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, a
consistent benchmark of these models remains lacking, hindering the development and consistent evaluation of new models in the
materials field. Here, we present a workflow and testing platform, MatDeepLearn, for quickly and reproducibly assessing and
comparing GNNs and other machine learning models. We use this platform to optimize and evaluate a selection of top performing
GNNs on several representative datasets in computational materials chemistry. From our investigations we note the importance of
hyperparameter selection and find roughly similar performances for the top models once optimized. We identify several strengths
in GNNs over conventional models in cases with compositionally diverse datasets and in its overall flexibility with respect to inputs,
due to learned rather than defined representations. Meanwhile several weaknesses of GNNs are also observed including high data
requirements, and suggestions for further improvement for applications in materials chemistry are discussed.
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INTRODUCTION
In the search for materials with various functional applications
ranging from catalysis to energy storage to electronics, machine
learning (ML) has quickly gained traction as a powerful and
flexible approach, especially where a broad exploration of the
materials space is needed1–6. The adoption of ML for materials
discovery is expected to expand even further with the ongoing
growth in the availability of high-throughput density functional
theory (DFT) datasets and continued advancements in ML
algorithms7–14. Conventionally, ML models in materials chemistry
are descriptor-based, where the key descriptors representing the
system must first be defined prior to fitting a suitable ML model
for prediction. General examples of these descriptors include
stoichiometry, the elemental properties such as group, period,
electronegativity and radius, and electronic properties such as
partial charges and s, p, d-band positions. A number of structural
descriptors have also been proposed satisfying translation and
rotational invariance, including but not limited to the Coulomb
matrix15, atom-centered symmetry functions (ACSFs)16, and
smooth overlap of atomic positions (SOAP)17. However, finding
effective descriptors can prove challenging for problems with a
large amount of compositionally and structurally diverse materials.
In recent years, graph neural networks (GNNs)18–20 have

received increasing attention as a method that could potentially
overcome the limitations of static descriptors by learning the
representations on flexible, graph-based inputs. Within this
overarching class of ML method, a number of GNN models have
been proposed for chemistry-related problems, with the earliest
adopters focusing on molecular systems21–24. Subsequently, GNNs
have also been used in materials prediction, with a number of
studies tackling systems such as periodic crystals25–30 and
surfaces11,31–34. These systems are generally described by their
atomic structures, where the atoms can be represented by nodes
and the neighbors encoded by the edges. Information regarding
the atoms and bonds such as element type and bond distances,
respectively, can be further encoded in the node and edge

attributes. GNNs operate on these atom-based graphs to create
node-level embeddings through convolutions with neighboring
nodes and edges. This differs from static or pre-defined
descriptors which are obtained via a dictionary lookup or a fixed
function with no trainable parameters, whereas in a GNN
embeddings are obtained from a trainable neural network35.
Given the rapid advances in GNNs for computational materials

chemistry currently, a critical evaluation of the current state-of-
the-art (SOTA) is warranted. To accomplish this, several criteria
should be met: (1) the same datasets should be used across the
evaluated models, (2) the datasets used should represent diverse
problems in materials chemistry, (3) the same input information
and representation should be used, (4) the hyperparameters of the
models should be optimized to the same extent, and (5) these
should be performed in a reproducible manner. In this work, we
attempt to address these criteria and provide an open-source
framework, MatDeepLearn, which can be used for further studies
in this area (Fig. 1)36. Provided with atomic structures and target
properties from any dataset of choice, MatDeepLearn handles the
processing of structures to graphs, offers a library of GNN models,
and provides hyperparameter optimization for the models. Within
this framework, improvements and additions to the input
representations and model architectures can be easily made,
which can greatly reduce the development time needed for new
ML models. GNNs can also be critically evaluated, and actionable
information can be quickly obtained when applied to specific
problems in chemistry and the materials sciences. We then use
this framework to benchmark several SOTA models and provide a
timely snapshot of current progress and suggestions for future
progress.

RESULTS
Evaluation of performance across datasets
We evaluated a total of seven ML models for regression tasks on
the five datasets, summarized in Table 1, with the specific
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hyperparameters for each top model listed in Supplementary
Table 1, with GNN entries shaded in gray. The MAE is obtained
through five-fold cross-validation over the entire dataset. We find
all four SOTA models (SchNet, MPNN, CGCNN, MEGNet) performed
very well for all tested datasets, once again demonstrating the
capability of GNNs for accurate predictions when ample training
data is available. Unexpectedly, we find the SOTA models all
performed equally well in most cases, which shows

hyperparameter optimization can be just as important as the
choice of graph convolutional operator and overall machine
learning architecture. The SOTA models also offer advantages over
simpler GNNs that were not designed for materials chemistry,
such as the GCN model, which performed markedly worse for
nearly all datasets except the bulk crystals. The particularly poor
GCN performance, especially for Pt clusters, suggests convolutions
involving edge attributes containing interatomic distances in the

Fig. 1 Scheme of the GNN testing framework and workflow. A general outline of the approach is presented, starting with materials data
(with several examples shown) in the form of structure files and target properties, followed by data processing, model construction, and
hyperparameter optimization as part of the MatDeepLearn framework. A general graph neural network architecture is constructed, taking in
graphs containing nodes, edges, node attributes, and edge attributes, inputted into an embedding layer, GC blocks, pooling, and dense layers.
This allows models to be similarly compared within a shared hyperparameter space.

Table 1. Benchmarking results–models.

Mean Absolute Error (MAE)

Datasets

ML models Bulk crystals (eV/Atom) Alloy surfaces (eV) MOFs (eV) 2D materials (eV) Pt clusters (eV)

SchNet 0.050 0.063 0.228 0.214 0.151

MPNN 0.046 0.058 0.245 0.204 0.182

CGCNN 0.049 0.060 0.233 0.208 0.205

MEGNet 0.048 0.069 0.253 0.224 0.180

GCN 0.067 0.175 0.355 0.304 0.577

SOAP 0.047 0.118 0.318 0.203 0.143

SM 0.394 0.621 0.608 0.607 0.460

Baseline 0.978 1.480 0.984 0.773 4.984
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Gaussian basis, which the SOTA models share, are much more
effective for capturing the spatial information of atomic structures.
Meanwhile, for non-GNN models, SM performed poorly across

the datasets, but SOAP performed surprisingly well for bulk
crystals and 2D materials and had a performance similar to or
better than the SOTA models for Pt clusters. On one hand, this
suggests the SOAP descriptors, like other similar descriptors such
as ACSFs, remain excellent choices for capturing spatial informa-
tion in atomic structures, particularly for use in machine-learned
potentials. On the other hand, this nevertheless highlights another
strength in GNN-based models in that a similar level of
performance can still be achieved without any pre-defined
descriptors or existing knowledge.
Relative to the Baseline, the SOTA GNNs had the highest relative

errors in predicting work functions for the 2D dataset, and this is
likely due to the much smaller size of the dataset compared to the
other datasets. This is followed by the MOFs dataset, which
performed second worst. Next, the GNNs performed similarly well
for bulk and surfaces, with both containing ample amounts of
data for training. Finally, the GNNs performed best for the clusters
relative to the Baseline; however, these errors, at approximately
0.015 eV/atom, remain relatively high for use as machine-learned
potentials. A more thorough evaluation would be needed in the
future for GNN performance in ML potentials, which may require
more significant changes in the model architecture and training
data and the inclusion of forces.

Visualization of GNN features
We then compare the ability of the different GNNs in learning the
structure and composition representations by obtaining the
graph-level embedding from the output of the readout/pooling
layer and visualizing with t-distributed stochastic neighbor

embedding (t-SNE) in Fig. 2, using the Bulk dataset as an example.
The plots in Fig. 2 represent a combined structure-composition
latent space for the trained materials where points within a
grouping can be expected to share similarities in both their atomic
structures and elemental compositions. Each of the four SOTA
GNNs is able to generate viable representations leading to
groupings of crystals delineated by similar formation energies. In
some cases, each GNN obtained a similar grouping in the latent
space, such as for structures labeled with the star or square
symbols. In other cases, the GNNs obtained dissimilar grouping,
for example with the ones denoted by the diamond, and to a
lesser extent the triangle and circle symbols. Ultimately, for
purposes of regression each of the plotted latent spaces is equally
valid and provides similar prediction errors; though additional
investigation may be needed in the future to reveal additional
differences for applications such as generative machine learning.

Training size dependence
Next, we investigated the training size dependence of the models,
another avenue of comparison between models and datasets, and
estimate the maximum performance with respect to data size in
Fig. 3, with specific values in Supplementary Table 2. The model
performance is obtained from five parallel runs for each training
size using a different train/test split and averaging the errors. We
find, in almost all situations, the training size dependence to be
very similar between the GNN models for a particular dataset,
approximately irrespective of the number of parameters in the
model. Unsurprisingly, SOAP has a better training size scaling for
the cluster dataset, likely thanks to the effectiveness of the pre-
defined descriptors. However, when applied to compositionally
diverse systems, SOAP loses this advantage over GNNs and has a
similar training size scaling with the other models. We also

Fig. 2 Visualization of graph-wide feature space. t-distributed stochastic neighbor embedding (t-SNE) plot of the graph-level embedding
from the readout/pooling layer for (a) CGCNN, (b) MPNN, (c) SchNet, (d) MEGNet trained on the bulk dataset, with each point representing an
individual crystal. Colors for each point are mapped to formation energies. Selected structures are marked by red shapes, with the same shape
corresponding to the same crystal in each plot.
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estimate performance on data sizes by extrapolating training size
dependence curves using a power-law function, ε(m)= αmβ

where ε is the error as a function of samples, m37. We extrapolate
to five times the current data set size for each case. For the bulk
datasets, fitting the power-law function gives exponents of ~−0.3
for the GNNs, and extrapolating predicts MAEs of ~0.02–0.03 for
5x data at ~150,000 training data. For surfaces, power-law fitting
suggests a better scaling than bulk with exponents of ~−0.5 and
provides an MAE estimate of ~0.03–0.04 eV. Meanwhile, a recent
study reached an opposite conclusion, finding worse scaling for

surface adsorption compared to the bulk11. This is likely due to
unrelaxed structures being used as inputs, which significantly
increases the dimensionality and difficulty of the task.

Evaluation of representation sensitivity
So far, we have focused primarily on model performance and
maintained a consistent representation for all models and datasets.
We examine the soundness of this methodology by testing several
different representations and observing their impact on the

Fig. 3 Training size dependence and extrapolation. The training size dependence for (a) bulk, (b) surface, (c) MOF, (d) 2D, (e), and cluster
datasets are plotted. Each point represents the average of five separate runs using different train/test splits. Solid lines are obtained from
fitting the power law.
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performance (Table 2). Here we use the optimal hyperparameters in
Supplementary Table 1, and test using the CGCNN model. Possible
avenues for modifying the representations include changing the
edge cutoffs and selection criteria for generating the graphs and
changing the properties of the node and edge attributes. First, we
find reducing the number of considered neighbors from 12 to 4 did
not significantly change prediction accuracy for most cases besides
the cluster dataset where the performance decreases significantly.
Meanwhile, a fully connected graph did not improve prediction
accuracy beyond the default, while greatly increasing the computa-
tional cost. Moving to node attributes, we found using node features
based simply on element identity with one-hot encoding was also
sufficient, and including additional elemental properties such as
electronegativity and radius were generally unnecessary for suffi-
ciently large data sets. We also tested using blank input node
attributes (with all zeroes), thereby removing any information
regarding the elemental composition; this significantly reduced the
performance for all cases except the cluster dataset (which only has
one element in the system). Finally, a test was performed where the
length of edge attributes was reduced from 50 to 10, thereby greatly
reducing the structural resolution encoded by the Gaussian basis.
This had little to no impact on 4 out of 5 datasets, but greatly
reduced the prediction ability for clusters as the information needed
to distinguish small changes in Pt-Pt bond distances is lost. Thus, we
find the default representation used in this work to be satisfied
within the scope of including only structure and atomic information
as inputs. Variations in the representation, up to an extent, did not
appreciably affect performance likely due to the property of GNNs in
producing learned representations via training.

DISCUSSION
With the rapid expansion of readily accessible high-throughput
DFT datasets and new GNN models which can train on them, there
is a strong demand for a general benchmarking tool to assess
which ML models are best for a given target application in
materials chemistry. We have developed such a framework,
MatDeepLearn, and used it to gauge the performance of several
GNNs on different materials data sets. We use the Pytorch and
Pytorch-Geometric libraries which allow for fast ML calculations
that are optimized for GPU-based computing resources, and the
Ray library which provides distributed hyperparameter optimiza-
tion on multiple nodes. In this work, training time ranges from
~10min to ~1–2 h on an NVIDIA Tesla V100 GPU for the smallest
and largest datasets, respectively. Hyperparameter training with
160 trials can be finished in roughly 2 days on a single GPU node
containing 8 V100 GPUs. In this work, five GNN models were
tested, but this list can be rapidly expanded with the provided
message-passing network class in Pytorch-Geometric, and with
approximately 40 existing methods already implemented for use.
Consequently, the development time needed for GNNs can be
shortened significantly, along with the rapid testing and

benchmarking of these developed methods. In general, we find
MatDeepLearn can provide a highly competitive baseline perfor-
mance with little to no human interaction or effort required; only a
suitable dataset containing atomic structures is needed as the
inputs.
Our current study also provides some general observations

regarding GNNs for materials applications. For the prediction tasks
in this work, a GNN which contains nonlinear update functions for
nodes (usually neural networks), and a sufficiently descriptive
representation of bond distances generally performs quite well,
and differences between the current tested graph convolutional
operators become small through hyperparameter optimization.
Within the scope of our study, including edge updates did not
appear to improve the performance perceptibly. In moving
forward, a more exhaustive screening of the GNN design space
may be fruitful, such as those proposed in a recent study by You
et al.38. Structure-agnostic models have also been developed in
recent years which rely only on composition and their related
properties39,40, with some approaches also using the GNN
architecture41. For certain applications such as bulk crystal
properties, these have shown to reach comparable performance
with the methods in this work.
Training the GNNs can be data-intensive, and we find a

minimum of 103–104 data points are needed to achieve adequate
accuracy in the models. This general sentiment is echoed in a
similar study finding descriptor-based models performing better
than GNNs with small data sizes, but with GNNs performing better
when ample data is available25. For applications with very small
datasets, pre-defined descriptors still work best, but will quickly
fail when moving outside of its domain of applicability. Methods
that can improve the quality of the initial guess structures could
help reduce the training costs significantly.
Approaches to effectively incorporate domain knowledge with

GNN models which complements their existing flexibility and
ability for learnable representations would also likely improve
performance. For example, additional information about the
system can be incorporated into the node or edge attributes,
such as the bond types, aromaticity, and chirality in the case of
molecular systems, which is not inherently known from just the
atomic structure. Along these lines, recent approaches incorporat-
ing some form of features relating to atomic orbitals and their
interactions have also yielded promising results30,42. Alternatively,
the inclusion of physical constraints in the loss functions or
through other means which have been used for ML, in general,
could also be considered for the GNNs here.
Additionally, effectively incorporating knowledge from pre-

existing datasets through transfer learning is also another
promising avenue for improvement by leveraging current high-
throughput computational databases. Besides the datasets used in
this study, many other computational databases with 104 or more
data entries are also available which would be well-suited for
training with GNNs7–11. GNN methods that can train on multi-

Table 2. Benchmarking results–representations.

MAE

Datasets

Input representation Bulk crystals (eV/Atom) Alloy surfaces (eV) MOFs (eV) 2D materials (eV) Pt clusters (eV)

Default 0.049 0.060 0.233 0.208 0.205

Neighbors: 4 0.054 0.082 0.238 0.195 0.410

Neighbors: full 0.047 0.060 0.261 0.198 0.203

Node features: element One-hot 0.067 0.058 0.232 0.217 0.184

Node features: blank 0.319 0.570 0.410 0.562 0.187

Edge length: 10 0.050 0.059 0.257 0.218 1.328
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fidelity data have been demonstrated recently which would
improve integration with multiple datasets43.

METHODS
Datasets
The datasets we used were each chosen to reasonably represent a variety
of different classes of inorganic materials ranging from 3D to 0D, each with
different target properties, summarized in Table 3. 3D materials are
periodic in three dimensions and include bulk crystals, while 2D materials
refer to solids with the finite thickness (single or few-layer), and 0D
materials refer to nanoclusters and nanoparticles which are non-periodic.
All five datasets were generated through DFT calculations. Four of the
datasets were obtained from curated, open computational databases.
For bulk materials, we compiled approximately 37,000 structures from

the Materials Project12, which contains the widest elemental diversity of
the datasets in this work, as well as the greatest diversity in structure size
from the number of atoms. Bulk crystals have been used as a de facto
benchmark system in the computational materials literature, with many
successful examples of regression and classification using both GNN
models25–30. The property selected for this dataset is formation energy in
units of eV/atoms. We note this database is constantly expanding, and here
we used a snapshot of a subset of the available data.
For surfaces, we employed a dataset of another roughly 37,000 structures

from the Catalysis-Hub database, containing eleven adsorbates on
approximately 2000 unique metal alloy surfaces44. For this dataset, we
used the relaxed surfaces containing the adsorbate as the input structures
and adsorption energy in eV as the target property. Unrelaxed surfaces are
not used in this study due to the ambiguities involved in the placement of
the adsorbate which will not be explored in detail here. With this dataset,
we intend to evaluate the general ability of the model for predicting
surface chemistry properties, which are relevant for catalysis.
For porous materials, we used a metal-organic framework (MOF) dataset

from the QMOF database containing roughly 13,000 processed structures
at the time of access, from experimentally synthesized MOFs and
containing band gaps in eV as the target property45.
For 2D materials, we used a dataset from C2DB, containing around

4000 structures, with the target property being work function in eV,
another important electronic property46. This dataset is smaller than the
other examples in this work while still being compositionally diverse with
60 elements included, and may prove challenging for GNNs with their
generally high data requirements.
The last dataset is compositionally narrow with only one element, Pt, but is

structurally diverse with around 20,000 different nanoclusters ranging from 10
to 14 atoms, and with total energies in eV as the target. These clusters were
obtained from basin-hopping global optimization in a previous study47. This
dataset was included to evaluate the ability of GNNs to capture structural
sensitivity for potential use in machine-learned potentials, a task for which
descriptor-based methods are currently most commonly used.

Structure/graph representations
The data are organized as a set of structures and a set of target properties
associated with the structures. The structures are described by a set of
atomic positions in Cartesian coordinates and an accompanying lattice
vector describing the dimensions of the periodic cell. Non-periodic

structures can also be represented by simply placing the molecule/cluster
in a sufficiently large empty cell and ensuring the distance between
images are larger than distance cutoffs for edges. Each atom is represented
by a node in the graph, and the edges are usually determined by
interatomic distances within a certain radius cutoff. The node attributes in
this work contain elemental properties of the atoms which are one-hot
encoded as described by Xie et al.27. Edge attributes encode the
interatomic distances, described later in the section.

Machine learning models and training
The general architecture of overall GNN models used so far in materials
chemistry contains several shared characteristics, which we unify into a
general architecture here, illustrated in Fig. 1. First, an embedding or
preprocessing layer is present which transforms the node attributes from
the input to a specified dimension. This is followed by N number of graph
convolutional blocks, which perform the convolution and aggregation of
the nodes. We used the same graph convolutional operators used in the
original GNN models. This is followed by a graph-wide readout/pooling
layer which provides an overall graph representation by aggregating the
node attributes; in this work, we choose from max, average, sum, and
set2set pooling. This is followed by M dense layers and the scalar output.
The dimensions of the embedding, graph convolutional, and dense blocks,
the type of pooling layer used, layer counts N and M, batch size, and
learning rate are hyperparameters that are selected through optimization
for each model and each dataset (search ranges in the SI).
We tested five different graph convolutional operators here:
The SchNet22 convolutional operator:

x0i ¼
X
j2N ið Þ

xj � hΘ exp �γ di;j � μ
� �� �2� �

(1)

Here, di;j is defined as the interatomic distance between atoms i and j,
and hΘ is a neural network containing dense layers which generate filters
from interatomic distances. Before being fed to the neural network, the
distances are expanded by a Gaussian basis function, which provides a
continuous, non-sparse representation. This was also later successfully
applied for use in other GNNs such as CGCNN and MEGNet. In the rest of
this work, we define this term as

ei;j ¼ exp �γ di;j � μ
� �2� �

(2)

and use these as the edge attributes.
Additionally, update functions are applied to the node attributes in the

form of dense layers. In the original SchNet model, atom features are
transformed to scalar atom-wise values before being summed over the
whole graph. This is common practice for machine-learned potentials
which first calculate the atom-wise energies before sum pooling to obtain
the total energy48,49. Instead, in this work we pool first to obtain the graph-
level features before predicting the scalar property using dense layers; this
is consistent with other approaches for materials property predictions such
as MEGNet and CGCNN.
The Message Passing Neural Network (MPNN)21 convolutional operator:

x0i ¼ Θxi þ
X
j2NðiÞ

xj � hΘ ei;j
� �

(3)

hΘ is a neural network containing dense layers, and update functions are
also applied to the nodes, this time in the form of a gated recurrent unit.

Table 3. Dataset information.

Datasets

Bulk crystals Alloy surfaces MOFs 2D materials Pt clusters

Target property Formation energy
(eV/atom)

Adsorption energy (eV) Band gap (eV) Work function (eV) Total energy (eV)

Number of data Approx. 37000 Approx. 37000 Approx. 13000 Approx. 4000 Approx. 20000

Material size range (atoms) 1 to 200 13 to 16 17 to 150 2 to 12 10 to 13

Material composition range
(elements)

87 42 78 60 1

Calculation method DFT: PBE+U DFT: BEEF-vdw DFT: PBE DFT: PBE+U DFT: PBE

Source Materials project CatHub QMOF C2DB Literature

V. Fung et al.

6

npj Computational Materials (2021)    84 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



The Crystal Graph Convolutional Neural Network (CGCNN)27 convolu-
tional operator:

x0i ¼ xi þ
X
j2N ið Þ

σ zi;jWf þ bf
� �� g zi;jWs þ bs

� �
(4)

Here, zi;j ¼ xi � xj � ei;j , and σ and g are sigmoid and softplus functions
respectively.
The MatErials Graph Network (MEGNet)26 convolutional operator:

e0i;j ¼ hΘeðxi � xj � ei;jÞ (5)

x0i ¼ hΘv
1

NðiÞ
X
j2N ið Þ

ei;j

0
@

1
A� xi

0
@

1
A (6)

Two dense layers are added at the beginning of each MEGNet graph
convolutional block to preprocess the inputs. Here hΘe and hΘv are edge
and node update functions, which are also dense layers. The updates
follow the order of edges, nodes, and global attributes. A skip connection
adds the unprocessed input attributes of each block with the output
attributes. In the original work, the global attributes were left blank for the
inorganic crystals dataset and are similarly unused here.
The Graph Convolutional Network (GCN)50 convolutional operator:

x0i ¼ Θ
X
j

1ffiffiffiffiffiffiffiffibdibdj
q xj (7)

We include this as a baseline graph convolutional with much simpler
construction and not specifically developed for materials chemistry
applications. In contrast to the earlier models, a purely linear update
function Θ is used here for the node attributes, and edge attributes are not
included. Instead, the edge weights are used, containing the inverse
normalized atomic distances.
For each model and dataset, hyperparameter optimization was performed

for 160 trials using the HyperOpt optimizer with an 80–20 split for training and
validation, and the model with the lowest validation error was selected51. The
hyperparameter search space can be found in the Supplementary Informa-
tion. To confirm whether 160 trials were sufficient, two tests were performed
for the bulk dataset with 640 trials and found no significant improvement in
performance. The reported performance is then obtained from five-fold cross-
validation on the selected model. We found the performance may differ from
the values in the literature; for example, the error for CGCNN in this study is
0.049 while it is 0.039 in the original paper27. This may be the result of many
potential factors, such as data selection, processing, and model optimization.
Here, we limited the training to within 200 epochs to make hyperparameter
optimization computationally affordable, while a more thoroughly optimized
model may have a better performance. Meanwhile, we also note large
variations in performance for the same model in the literature25,29,30. This
furthermore reinforces the need for a consistent framework for fairly and
reproducibly comparing models.
In addition, we tested two non-GNN models, using the Sine matrix52

(SM) and the Smooth Overlap of Atomic Positions17 (SOAP) descriptors, for
comparison. For the SM descriptor, the size of the matrix is padded with
zeros to the maximum atomic size of the dataset, and only the eigenvalues
are used, sorted in descending order of their absolute values. For the SOAP
descriptor, Gaussian type orbital basis functions are used and an “inner”
average is obtained for each element present in the dataset, whereby the
average is taken over the sites before summing up the magnetic quantum
numbers. The SOAP parameters, the distance cutoff, the number of radial
basis functions, the degree of spherical harmonics, and the standard
deviation of the Gaussians in the basis functions are all considered as
hyperparameters to be optimized. For both models, the descriptors are fed
into dense layers with variable layer count and size as determined from
hyperparameter optimization. Finally, an overall baseline is provided for
comparison in the form of a dummy regressor which only returns the
mean of the training dataset.
The code was written in Python 3.7 and uses PyTorch v1.6 and PyTorch-

Geometric53 v1.6 libraries for the ML models36. The DScribe library was
used to obtain SM and SOAP descriptors54. We use the Ray library which
provides distributed hyperparameter optimization on multiple nodes55.

DATA AVAILABILITY
The datasets used for testing are also provided in full or with instructions included at
https://github.com/vxfung/MatDeepLearn.
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