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Machine learned features from density of states for
accurate adsorption energy prediction
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Materials databases generated by high-throughput computational screening, typically using

density functional theory (DFT), have become valuable resources for discovering new het-

erogeneous catalysts, though the computational cost associated with generating them pre-

sents a crucial roadblock. Hence there is a significant demand for developing descriptors or

features, in lieu of DFT, to accurately predict catalytic properties, such as adsorption energies.

Here, we demonstrate an approach to predict energies using a convolutional neural network-

based machine learning model to automatically obtain key features from the electronic

density of states (DOS). The model, DOSnet, is evaluated for a diverse set of adsorbates and

surfaces, yielding a mean absolute error on the order of 0.1 eV. In addition, DOSnet can

provide physically meaningful predictions and insights by predicting responses to external

perturbations to the electronic structure without additional DFT calculations, paving the way

for the accelerated discovery of materials and catalysts by exploration of the electronic space.
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Following the development of robust quantum chemistry
software and the availability of high-performance comput-
ing, high-throughput screening is now an increasingly

widespread approach for materials discovery1–7. The field of
heterogeneous catalysis is no exception to this trend8–11. Indivi-
dual studies in the range of 102–103 unique materials using
quantum chemistry are now commonplace, and more extensive
studies can reach up to 104 candidates for properties such as
adsorption energies on surfaces. The primary bottleneck here
remains in the high computational cost of multiple geometry
optimizations on extended surfaces, generally obtained using
density functional theory (DFT). To bypass the need for DFT
calculations, one such strategy has been to discover “descriptors”
or “features” that can relate to the adsorption energy, often via
linear scaling relations12–14. Ideally, the feature is chosen such
that it is a more affordable quantity to obtain than the desired
property to predict. These features generally come in three major
categories: geometric, electronic, and energetic. Geometric fea-
tures are those obtained from atomic positions, such as coordi-
nation numbers15–18, atomic symmetry functions19–21, and graph
representations22–24. Electronic features are obtained from the
electronic structure of a system, usually from a single-point DFT
calculation. One of the most well-known examples of this is the d-
band center in heterogeneous catalysis, which relates the position
of the d-band in the electronic density of states (DOS) to the
adsorption energy on transition metals12,14,25. In the last category
are energetic features, which include adsorption energies, bulk
formation energies, and vacancy formation energies obtained
from geometry optimization. For example, the relationships
between adsorption energy of hydrogenated adsorbates and their
monatomic counterparts are well established via scaling
relationships12,26,27

With these features in hand, properties such as adsorption
energy can be predicted using a suitable regression model (Sup-
plementary Table 1). In early studies, linear regression was most
commonly used for its computational simplicity and physical
interpretability. However, in recent years, more involved machine
learning (ML) methods have become an appealing alternative to
provide predictions especially where multiple features or non-
linear relationships are involved28–31. These include Gaussian
processes regression32,33, kernel ridge regression34, random for-
ests35, and neural networks19,36. For geometric features such as
connectivity graphs, convolutional neural networks (CNNs) have
been used to predict various physical and chemical properties of
bulk crystals, molecules and surfaces22–24. Compressed sensing
methods such as LASSO and SISSO have also been used to select
the most relevant features for regression37–39. Ultimately, the
effectiveness of the ML model for prediction is still largely
dependent on the quality or relevance of the initial features
chosen for the input. Consequently, there is a considerable
demand to engineer effective features that can be used in ML,
especially ones which are applicable to a wide range of materials
and environments.

For a given study, a choice must eventually be faced with
regards to which class of features to use in ML. Geometric fea-
tures such as coordination and connectivity are computationally
trivial to evaluate and therefore affordable for high-throughput
screening, but generally requires an expensive investment of
104–105 data entries to train21–24. Next, there are electronic fea-
tures like the d-band center, which, requiring a DFT calculation,
are more expensive to obtain. However, we find in general these
features tend to need a smaller training set size to achieve a
similar level of accuracy as the geometric features36,38. Finally,
energetic features such as adsorption energy and vacancy for-
mation energy are again more expensive to obtain than the pre-
vious class of features, but can be utilized with even smaller

datasets on the order of ~101–102, especially in the case of linear
scaling relationships26,27,40–42. We note that while there are cer-
tainly exceptions to this trend with respect to the number of
training data required, this general order of features usually holds
for problems of the same scale and complexity. This is likely due
to structural features being more physically removed from the
property being predicted (i.e., adsorption energy) than electronic
features, and consequently require more training data to learn
their relationships.

In this work, we focus on the electronic features for adsorption
energy prediction, as it generally offers a good compromise
between training and screening cost and requires a training data
set size which is commonly obtainable in current high-
throughput studies (~102–103 entries). It is well-known that the
electronic structure of a surface is closely linked to its surface
chemistry, indeed, many parallels to frontier molecular orbital
theory have been made43,44. The electronic DOS of the surface,
much like the orbitals in a molecule, directly determines the mode
and strength of its interaction with adsorbates through the
hybridization and formation of new orbitals/states. Electronic
features such as the d-band center are derived from this basis, by
ultimately reducing the overall DOS of the system to a single
numerical quantity or feature which roughly correlates to the
position of the resultant antibonding states formed from the
surface-adsorbate interaction. However, despite its conceptual
simplicity, the d-band center does not extend well across a diverse
range of surfaces or adsorbates, leading to the development of
additional features involving higher-order moments of the d-
band, such as its width, skew and kurtosis39,45,46. In addition to
the position and shape of the d-band, the number or filling of
states, particularly near the Fermi level, have been found to be
important quantities governing both repulsive and attractive
interactions38,39,47,48. Unfortunately, the current situation in
using electronic features is such that no single feature is applic-
able for all materials when screening for a diverse set of materials.
Furthermore, these pre-existing features must also be discovered
or selected prior to the study, which may not always be possible
when moving to unexplored chemical spaces.

In this study, we explore a robust and more broadly applicable
approach, where the electronic features are (intentionally) left for
the ML model to discover. We aim to develop a general method
to featurize the DOS for a wide range of materials with minimal
human intervention or knowledge inserted into the framework,
by using CNNs. These networks generally consist of convolution
and pooling layers and are well-established for feature extraction
in image recognition for two-dimensional data; they have also
been applied to one-dimensional data49,50. Conceptually, one can
view the (average) pooling layers in the neural network as func-
tionally similar to the idea of quantifying the number or filling of
states in the DOS for a particular energy range. Meanwhile,
convolutional layers can be parameterized to recognize shapes
and contours which can also be comparable to the goal of
obtaining d-band moments such as skew or kurtosis. A major
advantage here of using CNNs is in the dramatically greater
flexibility in featurization which is not possible with pre-defined
features, and which can furthermore be better tailored to the
system or adsorbate being studied via training.

Results
Model architecture and training data. We develop a ML model,
DOSnet, which takes the DOS directly as the input and extracts
these features using CNNs as part of the training process (Fig. 1).
The input of DOSnet is the site and orbital projected DOS of the
relevant surface atoms participating in chemisorption, each
comprising a separate channel. For example, the input for
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adsorption on the top site of a surface is the DOS of the one
surface atom split into nine channels (s, py, pz, px, dxy, dyz, dz2-r2,
dxz, dx2–y2). The input for adsorption on a bridge site will be the
DOS of the two bridging surface atoms for a total of eighteen
channels, and for the hollow site the input will contain a total of
27 channels, corresponding to the three nearest neighbor surface
atoms. We include up to three atomic DOS as inputs for this
dataset, but additional DOS inputs can be easily included as
needed. The DOS input for each atom is then fed separately into a
convolutional network (a DOS featurizer) with shared weights.
The resolution of the DOS used in this work is 0.01 eV, though
we find a similar performance even as a lower resolution is used,
which can tuned in DOSNet by an initial average pooling layer (in
this work the DOS is downsampled by a factor of 4). The data are
further downsampled in the subsequent convolutional layers via
strides and average pooling. After convolutions, the network is
merged and flattened, and fed into the fully connected layer(s)
prior to the output layer. Additional details of the network and
hyperparameters can be found in the “Methods” section and SI
(Supplementary Fig. 2).

To train our ML model, we used a dataset containing 37,000
adsorption energies on 2000 unique bimetallic alloy surfaces51.
The bimetallic surfaces are comprised of 37 transition and non-
transition metal elements in stoichiometric ratios of 0, 0.25, 0.5,
0.75, and 1. Adsorbates included in this set are the monatomic
adsorbates H, C, N, O, S, and a selection of their hydrogenated
counterparts, CH, CH2, CH3, NH, OH, SH. For each adsorbate,
the adsorption energies have energy ranges of at least 2 eV to an
energy range of up to 10 eV for C, N, and O which suggests an
ample sampling of bonding ranging from very weak to very
strong adsorption. The dataset used therefore represents a
selection of important intermediates in catalysis adsorbed on
surfaces exhibiting an extensive range of chemical environments.
The DOS of these surfaces were not part of the published dataset
and were computed separately in this work from the provided

geometries. From computing just the d-band centers for the
surfaces, it is evident they do not adequately follow the adsorption
correlations described in the d-band theory across this set of
materials (Supplementary Fig. 1), underscoring the need for a
more robust and general predictive framework.

Evaluation of ML performance. We first test the performance of
DOSnet for adsorption energy prediction for each individual
adsorbate with the computed DOS as the input (Fig. 2). We used
the same hyperparameters across all the adsorbates. From fivefold
cross-validation, the weighted average of the MAE across the
adsorbates is 0.138 eV. Of the monatomic adsorbates, H had the
smallest MAE at 0.071 eV. Of the hydrogenated adsorbates, the
MAE is fairly similar except for SH at 0.209 eV. We next compare
the performance of DOSnet to the current state of the art
approaches on data with similar diversity and breadth in mate-
rials composition and adsorption energies. Compared to a
Gaussian process regression method trained on the same dataset
used in this work and using 2-D connectivity, atomic properties,
and d-band descriptors as features, DOSnet has a 0.06 eV lower
MAE on average32. In the same work, when additional energetic
information (adsorption energies of other adsorbates in the
dataset) are incorporated through residual learning as features for
the Gaussian process regression, it has a similar average MAE.
Meanwhile, DOSnet is also competitive with respect to a state of
the art graph-based ML approach, which has a MAE of
~0.12–0.15 eV on a separate dataset containing ~12,000 H
adsorption energies on alloys24. Overall, DOSnet performs very
well given it uses only DOS as input, without additional com-
monly used atomic features such as electronegativity, ionization
potential, and atomic radius nor using the information on geo-
metry and connectivity. These fitting results suggest the raw DOS
of just the metal sites on the surface serve as a suitable input in
generating an ‘electronic fingerprint’ of the surface system via
DOSnet with a very competitive performance.
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Fig. 1 General schematic of the DOSnet model. The site-projected DOS of a surface atom serves as the input (light blue) which goes through a series of
convolutional layers (green), followed by fully connected layers (red) and a final output layer. For additional atoms, the same convolutional layers are used
with shared weights before being merged with the fully connected layers.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20342-6 ARTICLE

NATURE COMMUNICATIONS |           (2021) 12:88 | https://doi.org/10.1038/s41467-020-20342-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Furthermore, we show it is possible to train a single instance of
DOSnet across all adsorbates simultaneously by including an
additional input representing the adsorbate (Supplementary
Fig. 3). Currently, we simply use the DOS of the binding atom

in the adsorbate (e.g., the C atom in CH3) in the gas phase. The
weights of the convolutional layers responsible for featurizing the
DOS are shared across the different adsorbate data sets. In doing
so, the average MAE is further lowered by ~17% to be 0.116 eV

Monatomic species 

Hydrogenated species 

H 

CH3 CH2 CH 

OH NH SH 

O 

N C 

S 

Fig. 2 DOSnet performance for individual adsorbates. Parity plots and histograms between the DFT-calculated and DOSnet predicted energies from
fivefold cross-validation are shown. Individual performances of DOSnet for each adsorbate are shown for a monatomic and b hydrogenated species.
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from fivefold cross validation (Fig. 3). The error distribution for
DOSnet shows a sharp unimodal distribution with a low
population of outliers and a standard deviation of 0.127 eV.
The root mean squared deviation (RMSD) is slightly higher than
the MAE at 0.173 eV. The improved performance of this
combined framework for DOSnet is possible due to transfer
learning since chemisorption across the adsorbates is generally
correlated to many of the same surface features. This approach is
appealing as data from existing materials databases of adsorption
energies can be leveraged to more efficiently train for additional
adsorbates and reducing the amount of training data needed.

We look at the prediction accuracy of DOSnet with respect to
training size (Fig. 4), which provides an important estimate of the
training data needed for a high-throughput screening application.
First, we show that by training DOSnet across all adsorbates, the
amount of training data needed can be reduced significantly by a
factor of 2 or more via transfer learning. For example, in the case of
H adsorption (Fig. 4a), to achieve a MAE of ~0.10 eV, ~1320
training data are needed when trained individually, but this is
reduced to 660 data when trained simultaneously with the other
adsorbates. The improvement is increased further for smaller
training sizes, where 480 training data (individual) vs 164 data
(combined) is needed to achieve the same MAE of ~0.13 eV. To
reach a similar level of accuracy with graph neural networks with
geometric features, ~12,000 training data are needed by compar-
ison24. With regards to overall training size dependence, we find the
testing error appears to converge to a MAE of 0.1 eV with around
30,000 training data, or 2700 training data per adsorbate (Fig. 4b).
On the other end of the spectrum, even relatively small datasets can
provide a reasonable accuracy. With 1800 data or around only 160
data per adsorbate, DOSnet can still provide a MAE of 0.23 eV,
which is still well below the standard deviation of the dataset at
1.95 eV and suitable for search space reduction purposes8.

We also investigate the impact of surface optimization for our
DOSnet training. Conventionally, surfaces are first optimized
before obtaining and applying electronic descriptors for property
prediction. In keeping with this convention and to provide a valid
comparison of performance with the literature we also used the
relaxed slabs for the DOS calculations so far. However, this
presents a serious limitation in high-throughput screening
applications because of the high computational cost of the
geometry optimization step. Incidentally, this also defeats the
purpose of using electronic descriptors over energetic descriptors
if the goal is to use a feature with lower computational
complexity. To test whether DOSnet can perform similarly well
without requiring geometry optimization, we re-calculate the

DOS for the unoptimized surfaces and train DOSnet with the new
inputs (Supplementary Fig. 4). The performance is reduced
marginally by 7.1% to a MAE of 0.125 eV (Table 1). Because
DOSnet can be applied to the DOS from unrelaxed surfaces
without a significant degradation in performance, this approach
remains viable as a means of computational cost savings.

The upper-limit convergence of MAE at ~0.1 eV also provides
a rough estimate on the limit of performance from using only the
DOS as the input. Since several aspects of the surface-adsorbate
interaction such as electrostatic interactions, charge transfer,
and surface rearrangement are not well represented from the

Fig. 3 DOSnet performance on the combined dataset. a Parity plot and histogram between the DFT-calculated and DOSnet predicted energies on all
35,000 entries from fivefold cross-validation. b Histogram of prediction residuals.

Fig. 4 Training size dependence of DOSnet performance. aMean absolute
error versus training size for DOSnet on the hydrogen adsorbate. A
comparison is made between DOSnet trained individually on H (red) and
DOSnet trained while including all other adsorbates in the combined
approach (blue). Colored guide lines highlight the reduced training data
needed in the combined case which takes advantage of transfer learning.
b Mean absolute error of the test set and train set versus training size for
the combined DOSnet approach trained on all adsorbates.
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pre-adsorption DOS it should not be possible to achieve perfect
parity; in that regard a MAE of 0.1 eV is already quite
noteworthy. The lack of information on these additional
interactions may also explain the comparatively poorer fitting
for certain adsorbates and not others such as SH. To achieve
better performance in future models, additional information that
relates to these aspects of surface adsorption may be included in
the ML model, either as secondary inputs or as separate networks
in an ensemble scheme.

Analysis of ML features and physical insights. Based on the
excellent prediction performance of DOSnet, we believe the ML
model has successfully obtained the relevant features in the
electronic structure relevant to adsorption energy. To show this,
we extract the output of the last convolutional layer of DOSnet,
and use t-SNE, a well-established technique for dimensionality
reduction and feature visualization52, to map them (using the H
adsorbate dataset as an example; additional details in the methods
section). The t-SNE plot in Fig. 5a corresponds closely to
adsorption energy, going from regions of weak adsorption on the
left to strong adsorption on the right in a generally continuous
manner. Visual similarities within the regions can be easily seen,
having been successfully captured by the ML features. Region A,
with the weakest adsorption energies, are primarily comprised of
alloys of non-transition metals (TMs) such as Ga, In, and Tl and
with some late-TMs such as Au. Region B comprises of alloys of
group 12 TMs which share pronounced peaks low in energy
corresponding to completely filled d-states. Region C comprises
of alloys of group 8–11 noble TMs such as Os, Pd, and Pt. Region

D is predominantly mid to early-TM alloys, and region E con-
tains the group 3–5 early TMs with many states in the high
energy regions, and which have the strongest adsorption. This
demonstrates our ML approach provides a physically meaningful
latent space from which further explorations on electronic
structure-property relationships can be explored, as well as
inverse design applications that have only been applied to
structural and compositional latent spaces so far53.

By obtaining the first principal component of the same set of
features, we also find a much stronger correlation with hydrogen
adsorption energy (R2= 0.86) compared to the d-band center
(Fig. 5b-c). In addition, because these features are drawn from all
orbital contributions, surfaces containing non-TMs without a d-
band can also be included in the same plot which are otherwise
left out when utilizing the d-band center. The correlation is
reasonably remarkably good provided only a single feature is used
(PCA 1) and confirms that our approach can obtain highly
effective features which can also be straightforwardly used in
other ML regression methods. Naturally, the fitting here is worse
than when we use the full DOSnet model since we only use the
first principal component and do not account for the non-linear
relationships between certain features and adsorption energy.
This was captured in the full DOSnet model where additional
fully connected layers were included after the convolutional ones.

To obtain further insights into the model, one can adopt a
perturbative approach on the ML inputs by applying transforma-
tions on the input DOS and observing its effect on the ML
prediction. This is particularly important, because in ab initio
methods, it is impossible to probe the effects of such a
transformation and interrogate how predictions might change
without repeating an expensive solution to the Schrödinger
equation. Furthermore, such transformations often cannot be
applied directly. Here, we can apply transformations such as
band-shifts, bandwidth-changes or suppression of certain states
to the input DOS, corresponding to electron/hole doping, strain
or alloying to the material and predict the effects on a property
(such as adsorption energy) readily using DOSnet.

The DOS of a particular surface can be shifted along the energy
axis, and the change in adsorption energy can be tracked as

Table 1 Comparison of performance on relaxed and
unrelaxed surfaces.

Optimized Unoptimized Difference (%)

MAE (eV) 0.116 0.125 7.100
RMSD (eV) 0.173 0.190 9.481
R2 0.992 0.991 0.170
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Fig. 5 Visualization of DOS feature space and correlation to adsorption energy. a t-SNE plot of DOS features obtained from the last convolutional layer of
DOSnet for the case of hydrogen adsorption. Points represent unique surface sites and are colored by the adsorption energy of that site. Selected DOS from
these sites are plotted. b Plot of d-band center versus hydrogen adsorption energy. c Plot of the first component of the DOS features from a principal
component analysis versus hydrogen adsorption energy.
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shown in Fig. 6a for the case of Pt. Shifting of energy in the DOS
can occur, for example, in electron/hole-doping. The largely
smooth and continuous plots in the ML adsorption energies as a
function of the magnitude of the shift suggests a well-behaved
model with an ample sampling of DOS in a region spanning
roughly 10 eV in their d-band centers. For all studied adsorbates,
a downshift of the Pt DOS leads to an increase in adsorption
energy and vice versa, differing only by the slopes; we find this to
be the case for other surfaces as well. If we track the d-band
center, we see these are directly correlated, which is line with
chemical intuition and the d-band theory. These results
demonstrate that for a given distribution of the DOS, the position
of the states taking part in bonding with the adsorbates, relative to
the Fermi level, is linearly correlated to the adsorption energy.
Next, we explore what happens when the distribution or shape of
the DOS changes while the d-band center is constant.

We apply another transformation to the DOS by tuning of the
d-band width, a similarly important factor in governing
adsorption strength like the d-band center, which can be
experimentally controlled by external strain. Here, we can
approximate the DOS as a set of gaussian functions, whose
width can be varied without changing the mean or area
(representing the d-band center or a total number of states in
the DOS). This allows us to independently investigate the effect of
the d-band width on adsorption energy. We demonstrate this for
the case of a Au3Pt alloy with a moderately localized DOS in
Fig. 6b. Interestingly, we find a broader d-band width leads to a
lower adsorption energy. This appears to run counter to the
expectation in the literature where a narrower d-band leads to a
lower adsorption energy. However, in previous theoretical studies,
the d-band width is not an independent parameter due to its
direct correlation with the d-band center, usually in the context of
applying a tensile or compressive strain to a surface54,55.
Consequently, when the d-band width is decreased in a surface,
the d-band centers are also shifted upwards, making it difficult to
deconvolute the separate contributions. Our study is not
constrained by these limitations. One way to rationalize our
observations is noting the fact that a broader surface d-band
pushes more states to higher energies which also leads to higher
energy surface-adsorbate antibonding states and therefore
stronger bonding. While this analysis is by no means conclusive,
we show that the freedom to apply transformation to ML inputs
allows us to explore these different scenarios on adsorption
energies, and provide guidance for further investigation using
first-principles calculations or experiments.

Finally, one can obtain insights into which parts of the DOS are
responsible for the overall ML prediction by masking portions of
the DOS input before making the prediction, which is sometimes
referred to as an occlusion sensitivity analysis. Here, we apply a
mask where all states are set to zero and move it along the x-axis
in Fig. 7. The y-axis, Δ, is defined as the adsorption energy of the
perturbed DOS minus the unperturbed DOS. A negative value
means removing these states makes the adsorption energy more
negative, suggesting that these states are responsible for the
bonding interaction, and vice versa. Starting with hydrogen
adsorption on Pt in Fig. 7b, we find positive values of Δ at low
energies and negative values of Δ at higher energies for the d
orbital contribution. Again, this is largely in line with chemical
intuition where surface d states which are lower in energy
contribute less to bonding, due to the lower position and greater
filling of the resultant surface-adsorbate antibonding states.
Calculation of the crystal orbital Hamilton populations (COHP)
from DFT, which is more grounded on rigorous quantum-
mechanics, yields a remarkably similar picture where the surface-
adsorbate interaction is primarily bonding, but with a noticeable
antibonding contribution near the Fermi level. The s-orbital
contribution is primarily bonding from both occlusion sensitivity
and COHP. However, when moving from hydrogen adsorption to
oxygen adsorption, a much larger proportion of states have
positive Δ, indicating a weaker net interaction (Fig. 7c). When
compared with the COHP, we also find a much larger proportion
of occupied antibonding states, consistent with the occlusion
sensitivity analysis. Similarly, the COHP picture shows the s states
are largely non interacting, and the occlusion sensitivity analysis
shows roughly equal positive and negative contributions to
adsorption energy.

These analyses suggest the DOSnet model has successfully
learned key aspects of the relationship between the DOS and the
surface-adsorbate interaction to provide accurate predictions of
surface chemistry. While it is dangerous to take ML-based
analyses at face value, these observations can be used to study
hypothetical responses to external perturbations, such as doping,
alloying, and strain, without any additional DFT calculations and
raise important questions which can then be investigated with
more rigorous methods. While we limit ourselves to just these
simple transformations, DOSnet allows us to obtain the mapping
P O xð Þð Þ for any property P to which the model was trained, when
the underlying material characteristic (in this case, the DOS) x is
transformed under an operation OðxÞ in response to external
perturbations with practically no additional cost. The addition of

Fig. 6 Effect of d-band changes on predicted adsorption energy. a Effect of d-band position on adsorption energy for the case of the Pt hollow site.
b Effect of d-band width on adsorption energy for the case of the Au3Pt top site.
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physical constraints to the ML model can potentially make more
robust physical interpretations of these results, going beyond
using ML simply as a black-box method.

Computational savings and relevance to high-throughput stu-
dies. Screening with DOSnet is best leveraged on surfaces with a
large quantity of unique adsorption sites, since only one single-
point calculation is needed per surface. This makes the method
suitable for studying bimetallic or multi-metallic surfaces such as
high-entropy alloys or surfaces containing a multitude of different
step or defect sites. It is also most efficient for studies with large
sets of adsorbates, for example for catalytic reactions with com-
plex reaction networks and many intermediates such as CO2

hydrogenation or alkane combustion. Potentially, the DOS of a
surface may not even require a DFT calculation, but can be
predicted by a suitable ML method as well, making the cost for
screening negligible56–58. Nonetheless, a sizeable amount of
training data containing adsorption energies are still needed prior

to screening, as shown in Fig. 4. This can make small-scale pre-
dictions difficult to do compared to using conventional linear
scaling relationships which can be fitted with just tens of data
points. A possible solution to this problem is to start training
from an existing model with weights pre-trained on a much larger
benchmark dataset, taking advantage of transfer learning to
reduce the data needed. The DOSnet model and weights from
training on the aforementioned 37,000 adsorption energies have
been made available for this purpose. Additional improvements
such as applying physical constraints to the model and methods
for dealing with multi-fidelity data can make this approach more
widely applicable and will be the topic of future investigation. As
computational databases continue to expand, including a recent
example with ~500,000 adsorption energies59, the effectiveness of
using pre-trained models will also likely improve significantly
when working with limited data.

Finally, this work demonstrates the potential usefulness of
compiling the DOS of surfaces to serve as an important
component in materials databases. Prior to the development of

Fig. 7 Occlusion sensitivity for predicted adsorption energy. a Density of states of the Pt hollow site. Occlusion sensitivity Δ, for b hydrogen adsorption
and c oxygen adsorption on the Pt hollow site and crystal orbital Hamilton population (COHP) curves for the corresponding adsorbate surface interaction.
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a means of using the DOS directly for prediction, this information
is of limited use for high-throughput screening except for
providing fixed features such as band gap and the d-band center.
However, with DOSnet, or with any other model which can
featurize the DOS, it can provide a much more broadly applicable
and information-rich source of data. Whereas other electronic
information of the system such as charge density could also be
useful, their prohibitively large file sizes make it impractical to
store compared to the DOS. While databases containing DOS
information are currently available for bulk crystal structures60,61,
we note no comparable ones currently exist for surfaces and other
solids.

Discussion
We developed an ML model which takes the DOS of the surface
atoms as input to provide accurate adsorption energy predictions
(average MAE= 0.138 eV). A key aspect of this model is the use
of one-dimensional convolutional filters which extracts features
from the DOS relevant to adsorption and avoids the limitations in
current pre-defined electronic descriptors. Including the DOS of
the adsorbate allows the model to predict adsorption energies of
an arbitrary adsorbate in a unified manner and provides better
performance via transfer learning (MAE= 0.116 eV). This com-
bined approach allows related adsorption data to be leveraged via
transfer learning to reduce the training data needed. From the
training size dependence of DOSnet, one can conclude it is best
suited for applications where a moderate amount of training data
is available (102–103 data entries per adsorbate). Because pre-
dictions can be made on unoptimized surfaces with only a minor
decrease in accuracy (MAE= 0.125 eV), this approach can offer
2–3 orders of magnitude or more in computational cost savings
over purely DFT. DOSnet therefore provides cost-effective,
accurate energetic predictions with minimal human preparation
or knowledge of existing features, making it suitable for high-
throughput screening applications. A further analysis of the
DOSnet features with t-distributed stochastic network embedding
(t-SNE) shows it can distinguish from a wide diversity of DOS
configurations and maps closely to the adsorption energy from
PCA. We applied a number of transformations to the inputs, to
interrogate effects of external perturbations such as doping,
alloying or straining, by altering DOS position, width, and by
selective masking of specific states. From these investigations we
find DOSnet provides remarkable physical interpretability and
insights to how adsorption energies would change under these
perturbations. These examples demonstrate the potential benefits
in using DOS-based ML methods to map out and obtain insights
in the electronic structure chemical space, as well as accelerate
predictions.

Methods
The 37,000 adsorption energies were obtained from DFT calculations, with further
details including force convergence, k-point sampling and energy cutoffs on the
computational method described in the reference51. The DOS on the ~2000 sur-
faces were not included in the public repository, and were separately calculated in
this work. These calculations were performed using the Vienna ab initio Simulation
Package (VASP)62,63. The Perdew-Burke-Ernzerhof (PBE)64 functional form of
generalized-gradient approximation (GGA) for electron exchange and correlation
energies were used. While the original reference used the BEEF-vdW functional for
the adsorption energy calculations, we found no significant difference in accuracy
when using PBE for the electronic structure during the ML training. All calcula-
tions were performed with spin polarization. The projector-augmented wave
method was used to describe the electron-core interaction62,65 with a kinetic energy
cutoff of 450 eV for the surface calculations. A 6 × 6 × 1 sampling of Brillouin zone
using a Monkhorst-Pack scheme was used for the k-points66. A Gaussian smearing
of 0.05 eV was used for the DOS. The DOS in the range of −14–8 eV were used,
with a resolution of 0.01 eV, for the ML portion.

The ML model was created and trained using the Keras library and sci-kit
learn67 was used for data processing and cross validation. The input data were
standardized by shifting the mean to zero and scaling to a variance of one over all

channels. Unless otherwise noted, rectified linear unit activation functions were
used in the convolutional and fully connected layers. A diagram of the model
architecture and hypermeters can be found in Supplementary Figs. 1 and 2 for the
DOSnet for individual adsorbates and all adsorbates, respectively. The total number
of trainable parameters in the two DOSnet models are respectively 1,718,401 and
1,993,601. The Adam optimizer was used for training with an initial learning rate
of 0.001 for a total of 60 epochs and a batch size of 16–128 depending on the
system. A Logcosh loss function was used for its robustness to outliers that may be
encountered in high-throughput databases. Training the DOSnet requires ~10–60
min on a single modern CPU; evaluating ~35,000 predictions on a trained model
requires ~30 s.

The principal component and t-SNE analyses were performed using the sci-kit
learn python package. The output of the last convolutional layer containing 3 × 150
filters is obtained, which is reduced to 100 with PCA to reduce noise. A perplexity
of 50 was used for t-SNE. For the perturbative analyses, five identical but separately
trained models were used with their outputs averaged to reduce noise. For the
occlusion sensitivity analysis, a window size of 1 eV was used, with a stride of 0.1
eV. This was performed for each separate channel representing the orbitals; the p
and d contributions were then averaged over the number of orbitals. Crystal orbital
Hamilton populations were computed using LOBSTER from the DFT wavefunc-
tions 68.

Data availability
The raw data used in this work are available from the corresponding authors upon
reasonable request. Processed data for a subset of adsorbates are also included at https://
github.com/vxfung/DOSnet.

Code availability
The machine learning code used in this work is available at https://github.com/vxfung/
DOSnet.
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