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ABSTRACT: The electronic structure of a material, such as its
density of states (DOS), provides key insights into its physical and
functional properties and serves as a valuable source of high-quality
features for many materials screening and discovery workflows.
However, the computational cost of calculating the DOS, most
commonly with density functional theory (DFT), becomes
prohibitive for meeting high-fidelity or high-throughput require-
ments, necessitating a cheaper but sufficiently accurate surrogate.
To fulfill this demand, we develop a general machine learning
method based on graph neural networks for predicting the DOS
purely from atomic positions, six orders of magnitude faster than
DEFT. This approach can effectively use large materials databases
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and be applied generally across the entire periodic table to materials classes of arbitrary compositional and structural diversity. We
furthermore devise a highly adaptable scheme for physically informed learning which encourages the DOS prediction to favor
physically reasonable solutions defined by any set of desired constraints. This functionality provides a means for ensuring that the
predicted DOS is reliable enough to be used as an input to downstream materials screening workflows to predict more complex

functional properties, which rely on accurate physical features.

Bl INTRODUCTION

Electronic structure calculations are ubiquitous in modeling
materials at the atomic scale and related to a broad range of
fundamental and functional materials properties.”> Density
functional theory (DFT) is the most prevalent of these
electronic structure methods, having been used to populate the
majority of existing computational materials databases such as
the Materials Project, OQMD, AFLOW, JARVIS, and
others.> ® With DFT, the electronic density of states (DOS)
can be obtained from the ground state electron density, which
not only is a key intrinsic property of a material but also
underlies many of its functional properties when used as
electronic and optical devices, sensors, catalysts, and for energy
storage, among others.”™'" Therefore, the DOS, and its derived
quantities such as band gaps and edge positions are heavily
utilized in screening for promising candidates in many high-
throughput materials discovery workflows, for example, in
searching for suitable photoanodes for solar fuel gener-
ation."”"” In a recent study, the DOS was also used as an
electronic fingerprint of materials undergoing structural
transitions to understand the underlying causes for changes
in electrical conductivity.'* Additionally, the DOS can serve as
an information-rich input to machine learning (ML)-based
approaches for predicting more complex properties. In one
such study, band edges were used as descriptors for an ML
model to predict the impurity properties in semiconductors.'
For catalysis, DOS descriptors such as the d-band positions
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and moments are extensively used to accurately predict surface
adsorption energies, and by extension, the catalytic perform-
ance of various materials systems.'°”>' Extending this
approach further, it was shown that the entire DOS range
can be used as the input for a convolutional neural network
model to accurately predict surface chemistry.”” A shared
characteristic in these applications is the need for fast and
accurate evaluations of the DOS, something which is not
always computationally tractable with DFT. Additionally, it is
highly desirable for a method to provide the entire DOS rather
than a specific derived value such as d-band center for catalysts,
or band gap for optical devices, for maximum transferability
and information retention. It has also been suggested that
features derived from the full DOS can be more accurate than
the same quantities predicted directly from the material
descriptors.”

In this paper, we turn to ML to determine the DOS of a
material from only the atomic positions, at a fraction of the
cost of DFT, thereby addressing the major challenge of

[Eiics

Received: December 10, 2021
Revised:  May 11, 2022
Published: May 24, 2022

https://doi.org/10.1021/acs.chemmater.1c04252
Chem. Mater. 2022, 34, 4848—4855


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Victor+Fung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="P.+Ganesh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bobby+G.+Sumpter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemmater.1c04252&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c04252?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c04252?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c04252?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c04252?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.1c04252?fig=abs1&ref=pdf
https://pubs.acs.org/toc/cmatex/34/11?ref=pdf
https://pubs.acs.org/toc/cmatex/34/11?ref=pdf
https://pubs.acs.org/toc/cmatex/34/11?ref=pdf
https://pubs.acs.org/toc/cmatex/34/11?ref=pdf
pubs.acs.org/cm?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.chemmater.1c04252?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/cm?ref=pdf
https://pubs.acs.org/cm?ref=pdf

Chemistry of Materials

pubs.acs.org/cm

Input representation

v N Node attributes X

N\
(T

Edge attributes E

Graph convolutions
<7
® ®
| 2 | 2
o - & - & - @
[ S ® ® ®
o ! 2
o o«

' 1
xi:Xi+ﬁ z hox(Xi @Xj@hee(ei,j )
JEN()

Pre-processing

GC layer
GC layer

| Post-processing I

| Post-processing

Normalized DOS Scaling factor

Mm : :

Ltotal®MLpostA2bscaling*A3LCDF* MLfeatures

Figure 1. Overall schematic of the graph neural network model showing its individual components. (a) Input representation containing a graph
with element one-hot node features and Gaussian-expanded interatomic distance edge features. (b) Graph convolutions which updates node
embeddings from node and edge features from nearby neighbors. (c) Architecture of the graph neural network from input to the two output heads,

and the loss function used to optimize the model.

efficient and accurate computation of the DOS. To accurately
map atomic structure to the DOS with ML requires a
representation which is sensitive to the full compositional and
structural dimensions of the system. Furthermore, to obtain
the projected DOS for each atom in the system, these
representations should also be local in nature in order to
distinguish changes in atomic environments. Structural
representations such as atom-centered symmetry functions*
and smooth overlap of atomic positions (SOAP)”’ can capture
these changes in atomic environments for predicting the full
atom-projected DOS, though these approaches do not
incorporate the compositional dimension and remain limited
to single element systems such as carbon or silicon.'****
Instead, we use a graph-based representation of the system
containing atoms as nodes and interatomic distances as edges
as inputs to a graph neural network’”** model to effectively
capture both compositional and structural dimensions. Despite
successful previous examples of graph neural networks in
predicting materials properties,””** the DOS is a high-
dimensional target output which presents additional difficulties
to be addressed such as smoothing, sensitivity to peak
positions, and others.”**

An important consideration that has not been addressed in
current ML studies is a need to ensure that the predicted DOS
also remains physically meaningful and accurate with respect to
its derived features, such as band gaps and moments. In other
words, given multiple predictions with an equal error in the
DOS curve, the solution with the lower error in the derived
features should be more preferred. This is particularly crucial
when the predicted DOS is then used as an input to a
subsequent, downstream, ML model to predict additional
materials properties, where such a model would be highly
sensitive to these features. Therefore, a method is needed to
physically inform® the DOS prediction model to favor the
more appropriate solutions. To tackle this challenge, we
propose a general physics-informed approach for predicting the
DOS which enforces the constraint within the model training
process. A key advantage of this approach lies in its ability to
use any set of differentiable DOS features to inform the
training with minimal modifications to the model, as opposed
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to ad hoc methods hard coded into the model architecture. As
different set features or descriptors are often required for the
various application domains, whether it be catalysis or
photovoltaics, this approach provides the greatest applicability
across the domains.

B METHODS

We use a graph neural network model which takes an input graph and
returns a new graph containing updated node embeddings with
information from its neighbors (Figure 1). The input graph,
representing the atomic structure, uses a one-hot representation of
atomic numbers for the node features and interatomic distances
expanded by a gaussian basis for the edge features. Input node
features first pass through a preprocessing step in the form of a dense
layer, followed by graph convolution layers with convolutions taking
the following form:

1
X =%+ — Z h@x(xi @ X; 5] h@e(ei,j))
JEN(i) (1)

where x; is the ith node in the graph, «; is the neighbor, and ¢, ; is the
edge connecting the two nodes. Here, hg, and hg, are single dense
layers with PReLU activation functions. Batch normalization is then
applied after each graph convolution layer. A dropout layer follows the
last graph convolution layer. The resulting latent node embeddings
then pass through two separate postprocessing layers, which provides
an output each, the normalized DOS, and the scaling factor. The
normalized DOS is a vector representing the discretized DOS, which
has a length of 400 in this work, and the scaling factor is a scalar
quantity.

The models are trained on the training set with the AdamW
optimizer for 800 epochs, with the best model image chosen from the
validation set. The performance is then evaluated with the test set. We
use a data set split of 80% training, 5% validation, and 15% test. The
dimension of the preprocessing and postprocessing layers, the number
of graph convolution layers, the dropout ratio, the learning rate, and
batch size are chosen through hyperparameter optimization with 200
trials for each data set. The best-performing hyperparameters are
listed in the Supporting Information. The model construction and
training was performed through a modified version of the
MatDeegLearn code® which uses the pytorch and pytorch-geometric
libraries.>* The training time required for the SrTiO; (~5000 entries),
alloy surface (~2000 entries), and bulk crystal data sets (~50,000
entries) on four V100 GPUs were S, 4, and 90 min, respectively.
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Figure 2. Density of states curves for a selected sample with median loss from the SrTiO; data set, showing predicted curves (red) overlaid on the
DFT curves (blue). A side-by-side comparison is provided for a model trained on the same data set split (a) with Lg.ures included and (b) without

Lfeatures .

In our model, we split the output containing the predicted DOS
into two components, the min-max normalized DOS and the scaling
factor ¢ (Figure 1lc). This design choice was made to prevent
occurrences where atoms with a larger number of states end up
dominating the training of the model, as their contribution to the loss
is greater when the DOS is not normalized. This occurs when the
atom-projected DOS is normalized with respect to the local charges
per atom, leading to atoms with relatively few states. Without
normalization, this resulted in predictions resulting in empty DOS for
atoms with fewer total number of states. Consequently, we use a loss
function which minimizes both the loss of the normalized DOS Lpng
as well as the scaling factor Ly, which is needed to reconstruct the
original DOS. In addition, we include a third loss function, the loss of
the cumulative distribution function of the normalized DOS L¢py,
utilized in a recent work in DOS prediction.”?

Finally, in order to enforce the accuracy of not just the overall
spectra but also its physical features, we include a fourth loss function
Lfeaures Which is the difference between the ground truth and the
predicted features. This represents a general approach where the
choice of the specific physical features can be chosen at will, usually
depending on the desired target application. In other words, a learning
bias is applied which penalizes unphysical features in the DOS.** As a
proof of concept, in our current work, we choose as features the first
four moments of the DOS, the band position, width, skew and
kurtosis, and a fifth term, the number of states near the Fermi level.
The quantities are computed from the DOS of the training data and
serve as additional prediction targets. These features were chosen due
to their importance in controlling the nature of surface-adsorbate
interactions in surface chemistry and catalysis, and which are widely
used as descriptors of adsorption energy.lé_21 Here, L, is then the
sum of the individual loss of the five features. With automatic
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differentiation, the gradients for the feature loss can be obtained and
used to optimize the model in the same manner as the previous loss
functions. The relative importance of the four loss functions is
controlled by weights A, 4,, 43, 4, which can be tuned accordingly (in
our current work, the weights are 1, 0.05, 0.005, and 0.15,
respectively). Controlling these weights thereby offers a great degree
of flexibility in controlling how strongly the physical constraints are to
be enforced. For all loss functions, we used the mean absolute error
(MAE) loss.

In addition, we tested two non-GNN models, using the SOAP*
and Local Many Body Tensor’> (LMBTR) descriptors for
comparison. These methods provide local descriptors for each
individual atom in the atomic structure, which are then fed into
conventional fully connected neural networks to make predictions of
the atom-projected DOS. The DScribe library was used to compute
the SOAP and LMBTR descriptors.®® All other aspects of these
models follow the graph neural network models, such as training, loss
functions, data splitting, and hyperparameter optimization. Finally, an
overall baseline is provided in the form of a dummy regressor model
which predicts a constant zero value for the DOS, to serve as a
comparison between data sets.

We trained our models on three computational data sets, referred
to as the SrTiO; data set, the alloy surface data set, and the bulk
crystal data set. The SrTiO; data set contains 5000 bulk perovskite
SrTiO; crystal structures which have undergone perturbations in its
six lattice parameters 4, b, ¢, a, f§, y. The parameters were sampled
uniformly within a range of a 10% deviation from the equilibrium
crystal parameters: a = b = ¢ =3.914 A and a = f = y = 90°. The alloy
surface data set contains 1913 bimetallic surface structures derived
from a previous study compiling surface adsorption energies for
catalyst screening,”” All surfaces take the form of the geometry-
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Table 1. Testing Loss of the DOS and Specified Features for the Investigated Data Sets”

normalized DOS
0.046 (0.042)
0.102 (0.090)
0.100 (0.098)

band center

0.052 (0.073)
0.094 (0.162)
0.287 (0.330)

SrTiO; data set
alloy surface data set

bulk crystal data set

band width
0.154 (0.288)
0.294 (0.725)
1.488 (1.888)

band kurtosis

0.056 (0.103)
0.188 (5.593)
0.578 (1.270)

band skew

0.024 (0.041)
0.075 (0.369)
0.123 (0.187)

states near E¢

0.022 (0.027)
0.133 (0.181)
0.150 (0.161)

“Values in parentheses denote training without incorporating physical constraints, i.e., the features loss.
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Figure 3. Representative density of states curves predicted with the graph neural network for the test set of the alloy surface data set with mean
absolute errors at the SOth quantile, showing predicted curves (red) overlaid on the DFT curves (blue).

optimized (111) termination of the bulk fcc structure, but differ in
their composition. The stoichiometry of the surfaces is either A, AB,
or A;B, where A and B are one of 37 sampled metallic elements in the
periodic table. The bulk crystal data set is sourced from the Materials
Project’ and contains 50,789 bulk structures of inorganic crystals
comprising a total of 88 elements. These structures are a subset of the
full Materials Project database, and structures with a retrievable DOS
with a sampling gridpoint of 2000, omitting ones with fewer
gridpoints of 300 and 600.

We calculated the DOS of the SrTiO; data set in this work using
DFT. The calculations were performed with the Vienna Ab Initio
Simulation Package (VASP).”**’ The Perdew—Burke—Ernzerhof*
functional within the generalized-gradient approximation was used for
electron exchange and correlation energies. The projector-augmented
wave method was used to describe the electron—core interaction.”®*!
An on-site Coulomb interaction was included using the DFT + U
method by Dudarev et al.*” in VASP using a Hubbard parameter U =
4 eV for the Ti. A kinetic energy cutoff of 500 eV was used. All
calculations were performed with spin polarization. The Brillouin
zone was sampled using a Monkhorst-Pack scheme with a 8 X 8 X 8
grid.* The atom-projected DOS is then obtained for each structure.
The DFT calculation details for the alloy surface” and bulk crystal**
data sets can be found in their respective references. For three data
sets, the raw DOS is preprocessed by smoothing with a gaussian filter,
shifting the energy range from —10 to 10 eV with respect to the Fermi
level and interpolating the curve to a resolution of 0.05 eV. This is
done to ensure that the DOS curve has a consistent energy range and
resolution within an external data set; however, this step can also be
omitted if such a criterion is already enforced at the DFT calculation
stage.

B RESULTS

We first evaluated the performance of our method for DOS
prediction on the SrTiO; data set. SrTiO; is a perovskite metal
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oxide with a computed band gap of 2.4 eV which undergoes an
insulator to metal transition under applied strain or pressure.
With three elemental components and a complex electronic
behavior, this represents a challenging prediction task which
furthermore requires a high degree of sensitivity with respect
to atomic positions, as minor perturbations can induce
significant changes in the band gap and overall DOS. Training
on the data set with our model yielded a Lpog of 0.046 states/
eV over the entire test set. To better visualize the predictive
performance, we plot an example of a predicted DOS from the
test set in Figure 2a. We find that the DFT and predicted DOS
curves match very closely with respect to overall distribution,
and major peaks are reliably reproduced, though small peaks
tend to be smoothed out. Visualizing the predicted DOS at
various quantiles from Sth to 95th (Figures S1—S4) shows
closely matched distributions in even the high error cases, and
no obvious outliers were observed for this data set. A
histogram of the errors in the test set is shown in Figure $29.

To investigate whether the inclusion of the features loss,
Lteaturess Will degrade the overall predictive performance, we plot
the DOS curve of the same test sample trained on the same
training split, but with the L. s set to zero (Figure 2b). We
find the two cases to be visually similar beyond some minor
variations, but the error in the DOS with respect to the features
(Lfeatures) is much higher when this loss term is not included.
This is similarly reflected in the performance across the entire
test set, where the accuracy with respect to the features is
significantly worse (Table 1, values in parentheses). Overall,
including Ly, With a weight of 0.15 slightly increases the
test set Lpog by 9.5% while reducing the L., by an average
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Figure 4. Representative density of states curves predicted with the graph neural network for the test set of the bulk crystal data set with mean
absolute errors at the SOth quantile, showing predicted curves (red) overlaid on the DFT curves (blue).

of 36.2% for this data set, which can be considered an
acceptable tradeoft.

Next, we evaluated the method for the alloy surface data set
containing bimetallic alloy surfaces. This data set was featured
in several recent studies where information from the DOS was
used to predict adsorption energies for a given surface active
site.””*> Here we obtained a higher test Lpog of 0.102 states/
eV, noting that this task is harder than the previous one due to
having less than half the training data while going from three
possible elements to 37. A histogram of the errors is shown in
Figure S30. Despite the added complexity, the performance
remains strong with the distribution of the predicted DOS
matching closely with the DFT in Figures 3 and S13—S16. We
can observe that the predictions remain accurate for different
elements as well as for cases containing the same element but
different neighboring environments, such as W in La;W and
Ru,W (Figure 3). At higher error quantiles (Figures S15—
S16), the height of the predicted DOS peaks tends to deviate,
particularly for atoms with very narrow bands, but the number
and position of these peaks remains well-matched. These
results are promising as they suggest that this method works
well even for relatively small data sets and with broad
compositional ranges. Including Lg,.s for this data set
increases test Lpog by approximately 13.3%, while reducing
test Liegures Dy an average of 60.8% (Table 1). The
improvement is particularly dramatic for some of the higher
order moments such as skew and kurtosis, where the
occurrence of outliers and the overall error is reduced
significantly.

To validate the effectiveness of this method in making
general predictions of inorganic crystals of arbitrary structure
and composition, we then evaluated the model on the bulk
crystal data set, which is derived from the Materials Project
database and contains 88 unique elements in total. This data
set provides a reasonable sampling of the possible inorganic
crystals encountered in nature and serves as a suitable
benchmark for the goal of a general DOS prediction method
for materials. Despite the significantly increased difficulty
compared to the previous two examples, an Lpgg of 0.100

states/eV was achieved with our model. A histogram of the
errors is shown in Figure S30. Plotting the median loss
examples in Figure 4 again shows very closely matched curve
distributions with only minor deviations in peak heights and
locations. The performance remains strong up to the 75th
error quantile (Figure S27) but degrades around the 95th
quantile (Figure S28), with more noticeable changes in peak
position and heights. This was anticipated due to the
sparseness of the data set and the possibility that many atomic
environments are not well-sampled. Nonetheless, extreme
outliers were not observed, and predictions could still
approximately match the overall distribution in the DOS.
With regards to including L., the Lpgs increased by only
2.0% while reducing Le.es by an average of 26.0% (Table 1).
Hence, we find in this case that the tradeoff in curve prediction
performance is almost negligible while providing a significant
boost to the accuracy of its physical features.

Finally, to compare the performance of graph neural
networks in this work with existing baselines using atomic-
environment-based descriptors, we implemented and tested
two additional neural networks which use SOAP* and
LMBTR™ atomic descriptors as inputs. A dummy model is
also included in the benchmark which only predicts zero values
for DOS to show relative differences between data sets.
Evaluating the performance of these models on the three data
sets in this work, we find that SOAP and LMBTR have slightly
higher errors for SrTiO; but much higher errors for the alloy
surface data set (Table 2). Predicted DOS curves for SrTiO;
(Figures S5—S12) and surface alloy data sets (Figures S17—
S24) are also shown, illustrating the degree of the degradation
in predictive capability compared to the graph neural network
model for the surface data set. This is largely unsurprising, as
atomic-environment descriptors perform well for capturing
spatial or geometric information, but becomes ineflicient when
the number of atom types becomes large.** For the bulk crystal
data set containing 88 atom types, both SOAP and LMBTR
representations become unwieldly and require hundreds of
thousands of dimensions per atom. For this reason, the bulk
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Table 2. Comparison of Testing Loss of the DOS Using
Graph Neural Networks with Other Baselines

alloy alloy bulk bulk
SrTiO;  SrTiO;  surface  surface  crystal  crystal
model MAE RMSE MAE RMSE MAE RMSE
this work 0.046 0.095 0.102 0.258 0.102 0.201
SOAP-NN  0.064 0.127 0.154 0.372
LMBTR- 0.062 0.122 0.146 0.338
NN
dummy 0.234 0.427 0.377 0.825 0.286 0.526
model

data set could not be evaluated due to memory limitations and
extremely large model sizes.

We also investigate the data dependence of our model by
plotting the training curves for each of the data sets in Figure S,
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Figure S. Training curves for models trained on the three data sets,
where five points were obtained by using 10, 20, 40, 60, and 80% of
the full data set for training, with the same split for validation and
testing. Both the loss for the normalized DOS (black) and the features
(blue) are shown here.

where the data split is kept constant and the proportion of
training data is reduced from 80 to 60, 40, 20, and 10%. As we
noted earlier, the alloy surface and bulk crystal data sets are
relatively small given the compositional diversity of the
materials, at approximately 2000 and 50,000 samples,
respectively. For a comparison, ML data sets in molecular
systems are generally much larger, with 130,000 samples for
QM9,"” while encompassing a much smaller elemental space
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(in this case containing only four elements, C, N, O, and F). As
a result, we expect a significant room for improvement if the
solid data sets are expanded to match the scale of molecular
data sets. The training curves in Figure S appear to agree with
this assertion, showing a continued decrease in the loss which
will likely continue beyond the current data set sizes. Both the
DOS and the feature losses exhibit similar trends of increasing
performance with our approach. Extrapolating to one order of
magnitude, more training data with a power law fit suggests
that losses can still be reduced appreciably (Figure $32).

Bl DISCUSSION AND CONCLUSIONS

The presented results provide a first glimpse into the accuracy
of DOS prediction using a general ML framework with flexible
physical constraints. This approach is able to effectively utilize
large data sets and provides predictions at significantly faster
speeds than DFT. For example, our model can predict the
DOS of the full Materials Project database of 140,000
structures in 49 s on a single V100 GPU, or an average of
0.00036 s per crystal. This provides an unprecedented roughly
six orders of magnitudes speedup over DFT, under the
assumption that a single low-fidelity DFT calculation of the
DOS will take several minutes per crystal, based on the timings
from calculations performed in this work. This approach also
scales linearly with system size, which allows for the DOS
prediction of extremely large crystals or amorphous systems.
With regards to model design, we note that there have been
significant recent advances in graph neural network designs for
materials chemistry applications.”* ™ These approaches can
be incorporated in our framework with only minor changes to
our overall workflow. Additional avenues for improvement can
also include better output representations for the DOS, such as
using a principal component basis™*"** or using autoen-
coders,””>* which would help by reducing the output
dimensions, as long as the reconstruction errors are sufficiently
low. Alternatively, coupling the ML predictions to a physical
model such as a tight-binding model or a lower level of DFT
theory in a A-ML approach™ could be used to improve
accuracy and reduce data requirements.

We also presented a novel method for applying physical
constraints through an additional loss function, which is used
in training of the model via automatic differentiation to obtain
gradients. An advantage of this approach is the flexibility of the
desired constraints, which can be changed with no
modifications to the rest of the workflow. For example, it is
trivial to include other constraints such as band gap, states at
the Fermi level, band energy, and the distribution of
excitations,” as they are also computed from the DOS curve
and are differentiable. While this may result in a tradeoff with
the accuracy of the DOS curve, in many cases, the actual
tradeoff is minor (~2% reduction in DOS accuracy for the bulk
crystal data set), while retaining the full expressiveness of the
original model. This generally offers advantages over physically
informed ML schemes which enforces constraints by tailoring
the ML architecture itself, which is often neither trivial nor
generalizable and comes at the cost of model expressivity.
Meanwhile, in other situations, where training data are limited,
constrained model architectures which limit the functional
space to 5physically meaningful solutions can prove to be
beneficial.>®

We anticipate the DOS prediction method to be especially
useful as a source of computationally inexpensive electronic
features for materials screening and ML studies which use the
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DOS as the input to predict more complex functional
properties. This removes the cost of the DFT from these
studies, making it on par with methods which only use atomic
positions as the input with respect to computational cost. The
fast speed of the model also makes it suitable in providing
electronic structure information during molecular dynamics
simulations or for use as a method of informing experiments in
real time in the form of a digital twin. As computational data
sets containing DOS data continue to expand rapidly, the goal
of a fully general electronic structure ML model for solids is
now within grasp.
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