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High-throughput predictions of metal–organic framework
electronic properties: theoretical challenges, graph neural
networks, and data exploration
Andrew S. Rosen1,2,3,4✉, Victor Fung 5, Patrick Huck 6, Cody T. O’Donnell3, Matthew K. Horton 3, Donald G. Truhlar 7,
Kristin A. Persson1,8, Justin M. Notestein4 and Randall Q. Snurr 4

With the goal of accelerating the design and discovery of metal–organic frameworks (MOFs) for electronic, optoelectronic, and
energy storage applications, we present a dataset of predicted electronic structure properties for thousands of MOFs carried out
using multiple density functional approximations. Compared to more accurate hybrid functionals, we find that the widely used PBE
generalized gradient approximation (GGA) functional severely underpredicts MOF band gaps in a largely systematic manner for
semi-conductors and insulators without magnetic character. However, an even larger and less predictable disparity in the band gap
prediction is present for MOFs with open-shell 3d transition metal cations. With regards to partial atomic charges, we find that
different density functional approximations predict similar charges overall, although hybrid functionals tend to shift electron
density away from the metal centers and onto the ligand environments compared to the GGA point of reference. Much more
significant differences in partial atomic charges are observed when comparing different charge partitioning schemes. We conclude
by using the dataset of computed MOF properties to train machine-learning models that can rapidly predict MOF band gaps for all
four density functional approximations considered in this work, paving the way for future high-throughput screening studies. To
encourage exploration and reuse of the theoretical calculations presented in this work, the curated data is made publicly available
via an interactive and user-friendly web application on the Materials Project.
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INTRODUCTION
Metal–organic frameworks (MOFs) have been extensively studied
over the last two decades due to their high degree of synthetic
tunability, which makes it possible to tailor their physical and
chemical properties for a given application1,2. While much
attention has been focused on the use of MOFs for industrial
gas storage and separations3,4, the design of MOFs with targeted
electronic properties has become a topic of recent interest as
well5–8. Through a judicious selection of inorganic nodes and
organic linkers, MOFs have been proposed for novel electronic
and optoelectronic devices, electrocatalysts, photocatalysts, sen-
sors, and energy storage devices, among many other applica-
tions6,9–11. However, with tens of thousands of MOFs that have
been experimentally synthesized12 and virtually unlimited more
that can be proposed13, it is often difficult to identify promising
MOF candidates with the optimal set of electronic properties.
The advent of machine learning (ML) and related big data

approaches has made it possible to more efficiently search through
MOF chemical space, and high-throughput computational screening
can often provide insight into previously unknown structure–function
relationships14–22. With this goal in mind, a high-throughput density
functional theory (DFT) workflow23 was recently used to construct a
publicly accessible dataset of quantum-chemical properties for
thousands of MOFs (and coordination polymers), known as the
Quantum MOF (QMOF) Database24. Like many databases of material

properties generated from high-throughput periodic DFT calcula-
tions25,26, the electronic structure properties within the QMOF
Database were computed with the relatively inexpensive
Perdew–Burke–Ernzerhof (PBE)27 exchange-correlation functional.
While PBE is useful for generating large quantities of material
property data that are often needed for ML, the electron self-
interaction error28 of generalized gradient approximation (GGA)
functionals like PBE can greatly influence the predicted electronic
properties28,29. Perhaps most notably, PBE is known to severely
underpredict band gaps30–32, but the degree to which there may be
qualitative (as opposed to merely quantitative) errors is not well-
established. This inherently limits the practical utility of data-driven,
computational screening approaches based on such a functional.
For inorganic solids, several approaches have been taken to

increase the accuracy of ML-predicted band gaps trained on high-
throughput DFT calculations in a computationally tractable
manner. The most straightforward option is to train ML models
on experimental band gap data33 or an ensemble of both
theoretical and experimental band gap data34. Unfortunately, this
approach is challenging to apply to MOFs because there are
relatively few reports of experimentally measured MOF band
gaps8. Furthermore, the reported band gaps of MOFs can vary by
several tenths of an eV depending on the synthesis conditions and
crystallinity of the material6. Another approach is to carry out
higher-accuracy DFT calculations on a subset of materials and use
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them to train an ML model that can make more reliable
predictions. Recently, large datasets of band gaps computed with
meta-GGA and hybrid functionals have been published for
inorganic solids35–37, although no such resource currently exists
for MOFs.
In the present work, we complement the existing dataset of PBE

electronic structure properties in the QMOF Database with
analogous data computed using three other functionals:
HLE1738 (a high local-exchange meta-GGA), HSE0639,40 (a
screened-exchange hybrid GGA), and a functional we refer to
here as HSE06* in which the amount of screened Hartree–Fock
(HF) exchange of HSE06 has been changed from 25% at short
interelectronic distances to 10%. By analyzing the electronic
structure properties calculated at these levels of theory, we
uncover severe theoretical limitations associated with the more
computationally efficient (meta-)GGA density functionals that
prevent them from achieving quantitatively—and sometimes
qualitatively—accurate band gap predictions for MOFs and
coordination polymers with respect to hybrid functionals. Since
it is known that different density functional approximations (DFAs)
can alter the underlying charge density, we also investigated
trends related to the computed partial atomic charges. In general,
we find that the different levels of theory predict similar partial
atomic charges; however, as compared to PBE, the meta-GGA and
screened hybrids tend to shift electron density away from the
metal centers and onto the ligand environments.
We conclude by using the electronic structure data to train

multi-task and multi-fidelity convolutional neural network models
that can predict PBE, HLE17, HSE06, and HSE06* band gaps given a
graph-based representation of a MOF crystal structure. We
anticipate that the computational data, trends, and subsequent
deep learning models presented in this work will make it possible
to achieve both rapid and accurate predictions of MOF band gaps
that can greatly accelerate the materials design and discovery
process. To help realize this vision, all the data underlying the
QMOF Database is now also made available as a dedicated,
interactive application on the widely used Materials Project41.

RESULTS
Band gap comparison
To develop ML models that can directly guide future experimental
efforts, it is essential to first understand the behavior and potential
limitations of various levels of theory when predicting MOF
electronic structure properties. As such, we begin by comparing
the DFT-predicted band gaps for 10,720 structures in the QMOF
Database with the PBE (GGA: 0% HF exchange), HLE17 (meta-GGA:
0% HF exchange), HSE06* (screened hybrid: 10% HF exchange at
small interelectronic distances decreasing to zero at large
distance), and HSE06 (screened hybrid: 25% HF exchange at small
interelectronic distances decreasing to zero at large distance)
functionals.
As shown in Fig. 1, we observe pronounced differences

amongst the predictions of the various DFAs. Starting with the
box plots, we find that of the four functionals tested in this work,
PBE generally predicts the lowest band gaps. Including HF
exchange—as with HSE06* and HSE06—tends to increase the
predicted band gap values (as expected42), with the relative
increase depending on the fraction of HF exchange in the selected
functional. Qualitatively, the HSE06* and HSE06 results are more
reflective of prior experimental studies6, which suggest that the
majority of MOFs are electronically insulating and that compara-
tively few exhibit semi-conducting or metallic character. Switching
focus to the HLE17 meta-GGA, we find that the median band gap
value is within 0.09 eV of the HSE06* calculations, suggesting that
the parameterization of this functional can partially improve upon

the band gap underprediction problem of PBE despite not
incorporating HF exchange.
When comparing the violin plots in Fig. 1, it is immediately clear

that the shape of the band gap distribution can vary significantly
depending on the DFA. The PBE-computed band gap data exhibits
two distinct distributions with peaks around 0.90 eV and 2.93 eV
(Fig. 1), which is observed for the full QMOF Database of
~20,000 structures as well (Supplementary Fig. 6). A qualitatively
similar distribution of band gaps is obtained when using the
HLE17 functional, which has peaks around 0.86 eV and 3.21 eV.
However, the two distributions in the band gap data exhibit much
more significant overlap for the HSE06* functional, and for the
HSE06 functional there is almost complete overlap such that the
overall distribution is virtually unimodal.
The two underlying distributions in the band gap data can be

better understood by separating the computed values based on
whether the material has closed-shell or open-shell character, the
latter of which is associated with lower band gaps on average (Fig.
2a). When including 10% HF exchange with HSE06*, the degree of
overlap between the closed-shell and open-shell band gap
distributions is partway between that of PBE and HSE06 (Fig.
2a), which illustrates the strong dependence of the trends on the
fraction of HF exchange. Taking the hybrid-quality calculations as
the more accurate reference point43, these findings suggest that
the PBE functional exhibits severe quantitative and qualitative
shortcomings when applied to a wide range of MOF structures
and that these shortcomings go beyond a simple underprediction
of the band gap. Although HLE17 increases the median band gap
of the dataset compared to PBE and decreases the number of
structures with a predicted band gap in the low-energy subset, it
retains the bimodal nature of the band gap distribution. None-
theless, HLE17 does significantly increase the band gaps of the
closed-shell frameworks, and the distribution of band gaps for the
closed-shell MOFs is similar to that of HSE06*.
By directly comparing the predicted band gaps for the PBE,

HSE06*, and HSE06 calculations, we find that there is a correlation
between the median band gap and the fraction of HF exchange
(Fig. 2b), at least within the range of 0–25% HF exchange
considered in this work. Assuming linear behavior in this region, it
can be concluded that the median band gap across the dataset
changes by ~0.05 eV per percent of HF exchange for the closed-
shell frameworks and ~0.10 eV per percent of HF exchange for the
open-shell frameworks, although we emphasize that these
statistics are specific to the QMOF Database and may differ for
other datasets of MOFs. Collectively, these results have significant

Fig. 1 Distribution of band gap data at four levels of theory.
Raincloud plots (i.e., combined violin plot, box plot, and strip plot)
for the DFT-computed band gaps, Eg, of 10,720 structures in the
QMOF Database at the PBE, HLE17, HSE06*, and HSE06 levels of
theory. The strip plots show all the data at that level of theory
(jittered horizontally for ease-of-visualization). The box plots show
the extrema (whisker tails), interquartile range (box boundaries), and
median (horizontal line). The violin plots show the probability
density of the data.
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implications for computational screening studies of MOFs and
coordination polymers, as the use of GGA functionals like PBE may
lead to incorrect qualitative comparisons between the band gaps
of different materials if some have closed-shell character and
others have open-shell character.
While Figs. 1 and 2 show how the entire dataset changes with

different density functionals, it is also important to investigate the
degree of correlation between the various functionals. As shown

in Fig. 3, nearly every MOF has a larger predicted band gap with
the HSE06* (Fig. 3b) and HSE06 (Fig. 3c) functionals than with PBE.
This is also the case for most of the closed-shell MOFs with the
HLE17 functional, especially when Eg,PBE is above ~1.5 eV (Fig. 3a).
For the closed-shell frameworks (Supplementary Fig. 7), there is a
linear correlation between the computationally inexpensive PBE-
quality band gaps and those calculated with the more accurate
HSE06* and HSE06 functionals as well as the HLE17 functional. As

Fig. 3 Correlations between the computed band gaps across multiple levels of theory. Correlation plots of the computed band gaps, Eg, for
10,720 structures in the QMOF Database at various levels of theory. a HLE17 vs. PBE; b HSE06* vs. PBE; c HSE06 vs. PBE. Given the large dataset
size, the data is shown as 2D histograms with the color bar reflecting the frequency of points in each bin. The y= x line is shown for reference.

Fig. 2 Difference in band gap distributions for materials with closed- and open-shell character. a Violin plots of the predicted band gaps,
Eg, for 10,720 structures in the QMOF Database calculated with PBE, HLE17, HSE06*, and HSE06. The left and right sides of each violin plot
include structures with closed-shell (8628 structures) and open-shell (2092 structures) character, respectively. A box plot is included inside
each violin, highlighting the extrema (whisker edges), interquartile range (box boundaries), and median (white dot) of the band gap data at
the specified level of theory. b Median band gap as a function of the fraction of Hartree–Fock (HF) exchange at small interelectronic
separation where 0%= PBE, 10%=HSE06*, and 25%= HSE06. The blue triangles and orange circles are the median band gaps for the closed-
shell and open-shell structures, respectively. The solid lines display the linear best-fit equations.
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shown in Supplementary Fig. 7c, a simple linear equation of the
form 1.09Eg,PBE+ 1.04 eV can predict HSE06 band gaps with an R2

value of 0.92, provided the frameworks are closed-shell systems
and have HSE06 band gaps above ~1.0 eV. Similar linear equations
can be obtained for HLE17 and HSE06* for the closed-shell
structures (Supplementary Fig. 7a and Supplementary Fig. 7b). The
correlation between PBE and the hybrid functionals is weaker for
MOFs with open-shell character, hence the larger degree of scatter
in the low Eg,PBE range of Fig. 3b and c.
As might be anticipated based on trends in crystal-field

splitting parameters and spin-pairing energies44, most open-
shell materials in the QMOF Database contain 3d transition metal
cations (particularly Cu, Co, Mn, Ni, Fe, V, and Cr in decreasing
frequency of occurrence) (Supplementary Fig. 8). Previous
theoretical work on transition metal complexes and gas-phase
molecules containing transition metal cations has implicated
large self-interaction errors (a consequence of each electron
interacting with the total electron density, including its own28) as
a major source of errors in systems with 3d transition metal
cations that have open-shell character45,46. More generally, self-
interaction error is usually considered to be responsible for many
of the deficiencies of DFT across virtually all properties and
material classes, often due to the associated delocalization
error47,48. Since self-interaction error is partially decreased by
the inclusion of HF exchange, this is a major reason that the
hybrid functionals give different results than the local functionals
for the band gap predictions in this work.

Partial charge comparison
Beyond band gaps, it is well-established that different DFAs can
change how the charge density is distributed in a given
material49–53. Furthermore, partial atomic charges (which can be
computed directly from the underlying charge density) are
commonly used in molecular simulations of MOFs and can be
used to interpret trends when modeling redox processes and
chemical reactions54,55. One such method to compute partial
atomic charges, the sixth-generation Density Derived Electrostatic
and Chemical (DDEC6) partitioning scheme56–58, has found
widespread use in molecular simulations of MOFs54 (e.g., for gas
storage and separations) and has performed well in tests of
reproducing the electrostatic potential59. To explore the sensitivity
of partial atomic charges to different DFAs, we compared over
900,000 partial charges calculated from the DDEC6 method using
charge densities at the PBE, HLE17, HSE06*, and HSE06 levels of
theory.
As shown in Fig. 4a, the DDEC6 partial atomic charges

calculated by PBE and HLE17 are highly correlated across the
entire dataset, with most points falling within 0.04 charge units
from the y= x line. When investigating the computed partial
charges by HSE06*, we find that the HSE06* partial charges are
even closer to the PBE reference than the HLE17 partial charges
are (Fig. 4b), indicating that 10% HF exchange at small
interelectronic distances does not substantially change the first
moment of the charge density. However, when increasing the HF
exchange at small interelectronic distances to 25% with HSE06, a
slightly larger difference can be observed (Fig. 4c).

Fig. 4 Correlations between the computed partial atomic charge across multiple levels of theory. Comparison of DDEC6 partial atomic
charges, qDDEC6, for 922,879 atoms based on charge densities at various levels of theory: (a) HLE17 vs. PBE; b HSE06* vs. PBE; c HSE06 vs. PBE.
Given the large dataset size, the data is shown as a 2D histogram with the logarithmic color bar reflecting the frequency of points in each bin.
The y= x line is shown for reference. d A histogram of the change in DDEC6 charges between the PBE and HSE06 levels of theory for the metal
sites and ligand atoms within the first coordination sphere.
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By focusing solely on the metal elements and the ligand atoms
within their first coordination spheres (as determined using the
CrystalNN near-neighbor finding algorithm60,61), we find that—
compared to the PBE reference—there is often a loss of electron
density (i.e., increased partial atomic charge) at the metal and
corresponding gain of electron density (i.e., decreased partial
atomic charge) on the surrounding ligands when using the HSE06
functional (Fig. 4d). These trends are consistent with previous
partial charge analyses carried out on transition metal complexes
and open-framework solids46,52,62. Given the large partial charge
dataset in the present work, we can conclude that this shifting of
electron density occurs for an enormously diverse range of
metal–ligand environments and can be taken as a rule-of-thumb
in most cases. While there are differences in the partial atomic
charges between the various levels of theory, they are generally
relatively minor. The overall strong agreement suggests that the
less expensive PBE-quality charges, which are available for
thousands of MOFs24,54, are likely suitable when carrying out
high-throughput computational screening studies.
Since no single charge partitioning scheme is expected to be

ideal for all applications, we also compared the effect of different
charge partitioning schemes for a given DFA. As shown in Fig. 5,
the differences between Bader63,64, DDEC656,57,65, and Charge
Model 5 (CM5)66 partial atomic charges (as computed with the PBE
functional) tend to be far larger than any differences observed
when changing the DFA, similar to what has been observed for
several inorganic solids67. This is especially the case when directly
comparing the Bader and DDEC6 methods. As one example of
many, large deviations are often observed for the S and P atoms of
SO4

2− and PO4
2− groups, which have partial atomic charges

upwards of ~2.4 charge units higher with the Bader method than
the DDEC6 method. In addition, there can be qualitative
differences between Bader and DDEC6 charges, such as atoms
that have a partial positive charge with the Bader method but a
partial negative charge with the DDEC6 method. While there are
also clear differences between the DDEC6 and CM5 methods (Fig.
5b), the agreement between these two charge partitioning
approaches is generally greater than that between DDEC6 and
Bader. For applications involving systems quite different from
those in available benchmarks55,56,66, it might be advisable to
compare multiple partial charge schemes and further investigate
any substantial differences68.

Machine learning
With the goal of reducing the number of DFT calculations needed
in future high-throughput computational screening studies, we
have evaluated the performance of several ML models that can
predict MOF band gaps from graph representations of their three-
dimensional structures (for the prediction of partial atomic

charges, we refer the reader to several ML models69–71 that have
been shown to accurately predict PBE-quality DDEC6 and CM5
charges for MOFs). Using MatDeepLearn72, we first trained
individual graph neural networks for each DFA and found that
they performed well at predicting DFT-computed band gaps
compared to a baseline model that simply predicts the mean of
the dataset for each entry (Table 1). Prior work24,72 on the QMOF
Database showed that a crystal graph convolutional neural
network model73 could predict PBE band gaps with a comparable
accuracy, and it is reassuring that relatively low testing-set MAEs
on the order of 0.24–0.29 eV can be obtained for the more
accurate DFAs (i.e., HLE17, HSE06*, HSE06). Overall, the graph
neural network trained on PBE band gap data performs better
than the graph neural networks trained on the HLE17, HSE06*, or
HSE06 datasets, which can likely be attributed to the greater
number of data points available for training with PBE. Despite
similar training set sizes for the HLE17, HSE06*, and HSE06 levels of
theory, the model based on HSE06 data has the largest testing set
MAE of 0.29 eV, which may be attributed in part to a wider range
of possible band gap values and a greater overlap in the band gap
distributions for the closed- and open-shell frameworks.
Next, we considered various approaches that could make more

efficient use of the available band gap data obtained with
different functionals. Starting with a multi-task learning approach
that predicts band gaps for all four DFAs simultaneously using a
single model architecture, perceptible but minor improvements to
the model performance are obtained (Table 1). While more
convenient to use than multiple individual models if multiple
band gap estimates are desired, an inherent drawback of the
multi-task learning method is that the training process requires
structures that have band gaps computed for all DFAs of interest,
which limits the amount of data that can be used.
An alternate way to efficiently leverage data at multiple levels of

theory is to construct a multi-fidelity model, which treats each
level of theory as a unique sample74,75. With a substantially
expanded dataset size of up to 52,806 samples, we find that the
multi-fidelity MEGNet model architecture of Chen et al75. achieves
significantly lower MAEs than the individual and multi-task models
for the 3-fi (i.e., PBE, HLE17, and HSE06*) and 4-fi (i.e., PBE, HLE17,
HSE06*, and HSE06) models (Table 1). These results demonstrate
that data at multiple levels of theory can be used to improve the
overall model performance, which is especially important for the
prediction of band gaps from hybrid functionals that are more
computationally demanding to calculate. However, we note that
the 2-fi model (i.e., PBE+ HSE06) does not outperform the multi-
task model. In future studies, it may be worthwhile to consider
additional approaches (e.g., Δ-learning)76 if only two fidelities are
available, especially given the correlation between the PBE and
HSE06 functionals (Fig. 4c). The testing set parity plots for each

Fig. 5 Correlation between partial atomic charges with different charge partitioning schemes. a Comparison of the partial atomic charges,
q, for 1,429,082 atoms computed using the Bader and DDEC6 charge partitioning schemes at the PBE level of theory. b Comparison of the
partial atomic charges, q, for 2,321,435 atoms computed using the CM5 and DDEC6 charge partitioning schemes at the PBE level of theory.
Given the large dataset size, the data is shown as 2D histograms with the logarithmic color bar reflecting the frequency of points in each bin.
The y= x line is shown as for reference.
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model are presented in Supplementary Figs. S12–S16, which show
that the predictive accuracy generally holds over the range of
band gaps, albeit with an increase in scatter toward the low band
gap region (e.g., Eg,DFT < 0.5 eV). The increased error in the low
band gap region can likely be traced back to several factors, such
as a smaller number of MOFs to train on in this range and a higher
fraction of open-shell MOFs whose properties are likely more
difficult to predict with ML models. Collectively, we anticipate that
the multi-task and multi-fidelity ML models will be a valuable
resource for future high-throughput screening studies by mini-
mizing the need to carry out computationally demanding hybrid
DFT calculations, particularly if low-fidelity PBE band gap data is
readily available (as is the case with the QMOF Database). Given
the promising nature of the multi-fidelity ML models, incorporat-
ing experimentally determined band gaps6,8 during the training
process would likely be worth pursuing in future work.

QMOF database on the materials project
With DFT-computed properties at multiple levels of theory, we
aimed to make the QMOF Database align with the findable,
accessible, interoperable, and reusable (FAIR) guiding princi-
ples77,78. Therefore, we conclude by showcasing an interactive
web application hosted on the Materials Project41,79, which can be
accessed at the following webpage: https://materialsproject.org/
mofs. Known as the Materials Project MOF Explorer, the web
application makes it possible to investigate the computed
properties in the QMOF Database through a user-friendly,
search-based interface. The data driving the MOF Explorer is
made available to the public through the Material Project’s
contribution platform MPContribs80,81. The MPContribs application
programming interface and its accompanying Python client82

provide a unified mechanism for contributors to submit a dataset
and for the community at large to programmatically retrieve,
download, and query the contributed materials data. Here,
contributions containing materials data are linked to a given
MOF via a dedicated, unique identifier (QMOF ID) and are
organized in components of queryable dictionary data, Pymat-
gen83 structure objects, and binary data files.
As shown in Fig. 6, the Materials Project-hosted MOF Explorer

allows users to sort and filter materials in the QMOF Database by
numerous geometric, compositional, textural, topological, mag-
netic, and electronic properties. Selecting a single material on the
MOF Explorer leads to a detailed calculation summary page, which
lists various tabulated properties for that material and an
interactive visualization of the DFT-optimized crystal structure. In
addition to DFT-computed properties, each material has an

associated MOFid/MOFkey84 (where computable) to support
substructure searches as well as cross-referencing with other
MOF databases. As the QMOF Database continues to evolve, we
plan to incorporate additional computed properties and visualiza-
tions on the Materials Project to enable further data exploration.

DISCUSSION
With a generated dataset of electronic structure properties for a
subset of ~10,700 MOFs (and coordination polymers) in the QMOF
Database24, we compare the performance of different DFAs for the
prediction of band gaps and partial atomic charges. When comparing
DFT-computed band gaps with the commonly used PBE functional
against those that incorporate some fraction of HF exchange, we
observe that PBE almost universally results in a lower band gap
prediction, as might be expected from prior work. Notably, this
difference is largely systematic for MOFs with closed-shell electronic
configurations and can be empirically corrected through a simple
linear relationship for structures that are semi-conductors or
insulators. For MOFs with open-shell electronic configurations (in
particular, those containing 3d transition metals), an even larger—and
less predictable—disparity between band gap predictions is observed
as a function of the fraction of HF exchange. As compared to the PBE
results, the meta-GGA HLE17 is found to increase the computed band
gaps for the closed-shell MOFs such that they are similar to values
predicted using the HSE06 screened hybrid functional with 10% HF
exchange at small interelectronic distances (denoted here as HSE06*).

Table 1. Graph neural network performance for predicting band gaps at multiple levels of theory.

Level
of theory

Constant
mean

Individual Multi-task Multi-fidelity (2-fi) Multi-fidelity (3-fi) Multi-fidelity (4-fi)

Test
MAE (eV)

Test
MAE (eV)

Dataset
size

Test
MAE (eV)

Dataset
size

Test
MAE (eV)

Dataset
size

Test
MAE (eV)

Dataset
size

Test
MAE (eV)

Dataset
size

PBE 0.940 0.228 20,423 0.217 10,720 0.214 31,235 0.209 41,993 0.175 52,806

HLE17 1.076 0.242 10,758 0.239 10,720 — — 0.145 41,993 0.119 52,806

HSE06a 0.858 0.257 10,813 0.236 10,720 — — — — 0.094 52,806

HSE06 0.802 0.289 10,812 0.267 10,720 0.276 31,235 0.179 41,993 0.119 52,806

Individual, multi-task, and multi-fidelity model performance. The individual models represent four separate models that are each trained on band gaps at a
single level of theory. The multi-task model is a single model that is trained on and predicts band gaps at all four levels of theory simultaneously. The multi-
fidelity models combine data from different levels of theory without all samples needing to have band gaps at each level of theory. The 2-fi, 3-fi, and 4-fi
models are trained/tested on PBE+ HSE06, PBE+ HLE17+HSE06, and PBE+ HLE17+ HSE06a+ HSE06 data, respectively. A baseline model that simply
predicts the mean value of the dataset is shown for reference. The dataset sizes refer to the entire available dataset, which is split 80:5:15 train:validation:test.
The mean absolute errors (MAEs) are shown for the testing set.

Fig. 6 Screenshot of the Materials Project MOF Explorer interface
to the QMOF Database. Representative snapshot of the current
search interface to the MOF Explorer application on the Materials
Project with an example multi-query search applied.
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However, compared to the hybrid functionals, HLE17 does not as
significantly increase the band gaps of the open-shell MOFs.
When investigating partial atomic charges, which are reflective

of the underlying charge density for a given density functional
approximation, we find that there are slight systematic differences
amongst the predictions of the different functionals. For both the
HLE17 meta-GGA and the screened hybrid functionals, electron
density localized on the metals is lower than with PBE, and the
opposite is true for the coordinating ligand atoms. Nonetheless,
these changes in the partial atomic charges are relatively minor
compared to the differences that arise from using different charge
partitioning schemes.
Finally, we used the electronic structure data generated in this

work to train multiple ML models that can predict MOF band gaps
at various levels of theory from graphs of the underlying crystal
structures. We find that individual graph neural network models
can predict PBE, HLE17, HSE06* or HSE06 band gaps from the
QMOF Database with a testing-set MAE of 0.23–0.29 eV. A multi-
task graph neural network model capable of simultaneously
predicting MOF band gaps for all four functionals performs slightly
better than the individual models, but with three or more
functionals to train on, a multi-fidelity model achieves the best
performance of the models tested in this work.
High-throughput computational screening approaches have

historically been devoted to the discovery of MOFs tailored for gas
storage and separations. With the dataset and ML models
presented in this work—coupled with an increased understanding
of the behavior of common DFAs for predicting electronic
properties—we anticipate that a computational materials design
perspective can be brought to countless application areas for
MOFs. Now hosted on the widely used Materials Project platform
(https://materialsproject.org/mofs), theorists and experimentalists
alike can leverage the data from tens of thousands of quantum-
mechanical calculations to accelerate the discovery of promising
MOFs for electronic and optoelectronic applications.

METHODS
Density functional theory calculations
Plane-wave, periodic DFT calculations were carried out using the Vienna ab
initio Simulation Package (VASP)85,86 version 5.4.4 and the Atomic
Simulation Environment (ASE)87 version 3.20.0b1. All structures were
adopted from the QMOF Database24. We consider properties calculated
with four exchange-correlation functionals: PBE-D3(BJ)27,88,89, HLE1738,
HSE0639,40, and HSE06* (i.e., HSE06 with reduced HF exchange). The PBE-D3
(BJ) calculations were obtained from the QMOF Database, as previously
reported24. The HLE17, HSE06, and HSE06* calculations are carried out in
this work using structures from the QMOF Database24 that were previously
optimized with the PBE-D3(BJ) exchange-correlation functional. In
commonly accepted notation, these levels of theory would generally be
referred to as PBE-D3(BJ), HLE17//PBE-D3(BJ), HSE06//PBE-D3(BJ), and
HSE06*//PBE-D3(BJ), indicating that the functional to the left of the double-
slash is a single-point (i.e., static) calculation carried out on the geometry
obtained using the functional to the right of the double-slash. For brevity,
we will simply refer to these levels of theory as PBE, HLE17, HSE06, and
HSE06*, respectively. Of the 20,000+ structures in the QMOF Database with
properties computed using PBE, ~10,700 have computed properties at the
HLE17, HSE06, and HSE06* levels of theory based on the calculations in
this work.
The HSE06 functional is a screened-exchange functional built upon PBE

and replaces a portion of PBE’s local exchange with 25% HF exchange at
small interelectronic distances, decreasing continuously to zero at large
interelectronic distances39,40. HSE06 was selected in this work because it is
currently the most widely used functional for predicting the band gaps of
solid-state materials when high accuracy is required, including for
MOFs43,90. Other functionals may have comparable or slightly better
performance for certain systems37,91–93 but are less widely used and tested.
In addition to HSE06, we considered the hybrid functional defined here as
HSE06*, which has 10% HF exchange at small interelectronic distances and
decreases to zero at large interelectronic distances. HSE06* was considered
because the standard HSE06 functional can overcorrect the band gap

underprediction problem of PBE for some materials94, as is the case with
MOF-595,96. Considering a functional with an intermediate fraction of HF
exchange between that of PBE and HSE06 also makes it easier to discern
the impact of HF exchange. The HSE06 and HSE06* calculations are
considerably more expensive than the PBE calculations because of the
nonzero fraction of HF exchange. With this in mind, we included the HLE17
meta-GGA functional as well because prior benchmarking studies38,43

suggest that it can greatly improve the prediction of semiconductor band
gaps without the need for computationally expensive HF exchange. While
one could also consider the GGA+U approach97, relatively little is currently
known about selecting empirically ideal U values for MOFs90,98,99 despite
its widespread use in correcting the predicted energetic and electronic
properties of inorganic solids in high-throughput DFT databases 100–102.
For materials that are closed-shell (i.e., without magnetic character), the

band gap is defined as the energy difference between the conduction
band minimum (CBM) and valence band maximum (VBM). For materials
with open-shell character, there can be more than one way to characterize
the band gap103. Except where otherwise stated, we define the band gap
for spin-polarized systems as min CBM";CBM#

� ��max VBM";VBM#
� �

,
where ↑ and ↓ refer to the spin-up and spin-down spin-orbital manifolds,
respectively. Nonetheless, we note that this definition can occasionally
result in a band gap that is associated with a formally spin-forbidden
electronic excitation, as depicted in Supplementary Fig. 4. Using the band
gap instead defined as min CBM" � VBM";CBM# � VBM#

� �
does not

involve a spin-flip. Regardless of which band gap definition is employed,
the trends and conclusions reported throughout this work remain
unchanged (Supplementary Fig. 5). We also note that the computed band
gaps refer to electronic band gaps and are not directly comparable to
experimentally measured optical gaps (e.g., via UV-Vis spectroscopy)104,105,
particularly when the exciton binding energies are non-negligible, as has
been observed for some MOFs106.
The following software packages were used to analyze the DFT data in

this work this work: Chargemol v. 09-26-2017 (DDEC6 and CM5
calculations)107, ASE v. 3.20.0b1 (orchestrate the VASP calculations)87,
Pymatgen v. 2020.12.3 (electronic structure analysis)83, Bader v. 1.04 (Bader
analysis)64, NumPy/Pandas/SciPy/matplotlib/seaborn (data analysis and
visualization)108–112, and PtitPrince v.0.2.5 (for raincloud plots113). Addi-
tional methodological details regarding the DFT calculations, dataset
curation, updates to the QMOF Database, and data analysis can be found
in the Supplementary Information.

Machine learning
Graph neural network architectures, which take graphs representing the
crystal structures as inputs, were used for the ML models. The graph
representations contain atoms as nodes and interatomic distances as
edges. Here, the atoms are represented with a one-hot encoding of the
element with a vector length of 100 within the node attributes. The edge
attributes contain interatomic distances within a cutoff of 8 Å and up to 12
neighbors per node, where the distances were then expanded by a
Gaussian basis114 to a length of 50. In this work, an additional state attribute
is included, representing the level of theory used (i.e., fidelity) as an integer.
The graph neural network itself adopts the MatErials Graph Network
(MEGNet) architecture115 where the node, edge, and state attributes are
propagated sequentially in the stated order during the graph convolutional
steps. The overall model contains one pre-processing layer, four graph
convolutional layers, one pooling layer using the Set2Set function, and
finally two post-processing layers. The pre-processing, post-processing, and
graph convolutional update functions are all fully-connected layers with
Rectified Linear Unit activation functions and with dimensions of 128, 128
and (128, 128), respectively. The models were trained with the AdamW
optimizer116,117 using an initial learning rate of 0.0005 and a batch size of
128 for a total of 250 epochs. The model state with the lowest validation
MAE is saved and used for testing. The training:validation:testing ratio used
is 80:5:15, and the samples were randomly split across the training,
validation, and testing sets. For all cases in this work, the same
hyperparameters were used in the models. For the individual models, the
models were trained separately. In multi-task learning, the output
dimension was expanded to four, and the predictions were performed
simultaneously with a single model for all fidelities (i.e., levels of theory). For
multi-fidelity learning, we adopt the approach used by Chen et al75. where
each fidelity is considered a unique data sample and structures with
different fidelities can appear in both training and testing data splits. The
model training and testing was set up and performed using the
MatDeepLearn framework72, which is implemented using the PyTorch118

A.S. Rosen et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   112 

https://materialsproject.org/mofs


and PyTorch geometric119 libraries. The training and evaluation were
conducted on four NVIDIA Tesla V100 ('Volta') graphics processing units.

DATA AVAILABILITY
With the release of the Materials Project-hosted MOF Explorer interface to the
QMOF Database, all data in this work can be accessed at the following webpage:
https://materialsproject.org/mofs. Each version of the QMOF Database made
available on the Materials Project is permanently archived on Figshare at the
following DOI: 10.6084/m9.figshare.13147324. The VASP input and output files
are made available via the Novel Materials Discovery (NOMAD) platform120,121

with the following dataset names and DOIs: QMOD Database - PBE (10.17172/
NOMAD/2021.10.10-1), QMOF Database—HLE17 (10.17172/NOMAD/2021.11.17-
3), QMOF Database—HSE06* (10.17172/NOMAD/2021.11.17-2), and QMOF
Database—HSE06 (10.17172/NOMAD/2021.11.17-1).

CODE AVAILABILITY
The codes used to carry out this work are described and referenced in the Methods
section and are available free-of-charge with the exception of VASP.
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